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1. Introduction. Let us denote by N the sequence {l, 2, 3, • • • }, 
by p a prime, by (at b) the greatest common divisor of a and &, by 
[a, b] the least common multiple of a and 5, by {*: • • • } resp. 
A {*: • • • } the set resp. number of * with the properties • • • , by 
/i the Moebius function, by C an absolute positive constant and by 
C(*) a positive constant depending on * only. 

Suppose NjCZN ( j = l , 2, 3, 4) and denote by yi~yz an arbitrary 
relation ( = linking) with yi,2 G N. For instance, [ y i ^ y a ] : 
= [(yu y2) = 1 ] resp. [yi^fe] : = [yi = ^2] can be considered a weak resp. 
strong linking. By a linked binary representation of a pair m, n with 
ntC£N and nÇiN we mean a solution #1, #2, #3, #4 of the Diophantine 
system Xi+x2=

:mA%z+%*=:nA%jGNj C/= 1, 2, 3, 4)A#2~#4. Vari
ous generalizations are obvious (more summands, triples, etc.). We 
do not intend to give a detailed and general study of the questions 
arising in this context. We rather prefer to investigate two special 
problems of this type with ~ being = ; they are inspired by the 
following two well-known results of Romanov: 

Ea: = {m:m = p + va Ap prime A v G N} (1 < a G N) 

and 

Fa: = {m: m = p + av A p prime A v G N} (0 G N) 

have positive asymptotic density [l, pp. 63-70]. 

2. On Romanov's first theorem. Generalizing the result for Ea, we 
show that the set {m, n: m = pi+vaAn = p2+vaApi,2 primeA^GiV"}, 
considered as a set of lattice points in the plane, has positive asymp
totic density in the plane: 

THEOREM 1. For Kat-N there exist constants Ci(a) and C2{a) such 
that x>Ci(a) implies 

Ai(x, a): = A{m}n:m < x An < % Am = pi + va A 

n = p2 + va A pi,2 prime A v G N} > C2(a) x2. 

1 With support from NSF grant G-16305 to Purdue University. 
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PROOF. Let/i(w, n\ a):~A {pi, £2, v:pi+va = rn/\p2+va=:n} ; since 
Ax(x, a)=A{mf n\m<x/\n<x/\j\{m, n; a)>0}, the Schwarz in
equality yields 

(1) ( Z) Z ) / i ( ^ ^ ; ^ ) ) ûAi(x,a)3Z J2fi(m}n;a). 
\ m<x n<x / m<x n<x 

On the one hand, we find 

X HM™>n;a) = A{php29v:p1 + va < x A P2 + va < x} 
m<x n<x 

(2) £ ^ < / ' I : ^ I < Y } - 4 |^ : />2<-J} J 4 { Î ' : Î ' 0 < 4 } 

—)(T) ( , > « . » . 

On the other hand, we find 

Si(x} a): - X) Z)/i(^> w; a) 

= 4̂ { ph p2, pz, p4, Vu V2lpi + Vi = p2 + V2< X ApZ + Vl 

= p4 + V2 < x} 

^ Z)f_ Z),_ ^{ ƒ>!> J?2, #3, ̂ 4: pi - p2 = pZ - pi 

= P 2 - » l A ^1,2,3,4 < %}. 

vi<x1,a vt<xlla 

In case of Vi = v2 resp. z>i=̂z>2 we use 

x 
A{p:p<x} <C 5 (^ > 2) 

log# 
resp. Brun's sieve method [2, 2. Satz 4.2] and obtain 

Si(*, a) < cJ-^--) xV* + 2 £ E (C%T^—g{vi - /2)) 
Mogff/ *2<n<*1/a\ log2* / 

(* > C6) 
where 

-n(.+i)- z f 

( # \ 2 X2 

- ) a1'* + C9 — — X) *"(«; *, <*)g2M (* > Ce) 
log x/ log4 a; „<* 

It follows 
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where 

_ / N . i I/a a a \ 

F(u;x, a): = A[vi,V2:v2 < vi < x A vi — vt = u). 

Writing g(u) as a sum and changing the order of summation gives 

Z) F(u; x, a)g*(u) = Z Z ~rr Büdl> d^; *> a^ 
u<x di<x d2<x d\di 

where 

B(k; x, a) : = Z * ( * ; *> <0 < 2x*i*k-Uw<» (n(k) ?* 0) 
w<a; ; t t= 0 mod A; 

[l , p. 66] with 

log& 
w(k):= A{p:p\ k} <Cio 

log log k 

Since M W O ^ O A M O W ^ O imply ju([di, d2]) 7*0, we obtain 
^2-f-l/a /ç2+2/a 

S i ( * , a ) < C 7 — — + 7 - — Cn(a) Z E ( W i ) - 1 [ i i , A ] - 1 , i l 

log2 a; log4x dl<* d2<* 

(x > C6). 

Using [du ^ 2 ] 2 è ^ 2 , we find 

xWfa 
(3) Si(x, a) < C 12(a) (x > C«). 

log4x 

(1), (2), and (3) give the desired result. 
I t is not difficult to determine a dependence of Ci^ia) on a ex

plicitly. Since Ai(xt a)^A{m1 n\m<x/\n<x), Theorem 1 is best 
possible with respect to the order of magnitude in x. Theorem 1 is 
also correct for a = 1 but of no interest. 

3. On Romanov's second theorem. In a similar way we generalize 
the result for Fa: 

THEOREM 2. For 1 <a(E.N there exist constants Cn(a) and Cu(a) such 
that x > Cu(a) implies 

AÏ(X, a): = A{my n:m<x/\n<x/\m = piJtavA 

n = p2 + av A pi,2 prime A v G N} > Cu(a) 
logx 

PROOF. Let/2(w, n; a):~A{pi, p2, v:pi+av = m/\p2+av = n}. As 
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in the preceding proof, we find 

/ x \2 log x/2 
(4) E E Mm, n\ a) > Cj- ) -2-^- (* > C(a)) 

m<x n<x \l0g*/ log a 

and 

S*(xf a): = E HM™> n\ <0 

( ff \ 2 logff _ _ / X \ 2 

) T-5- + 2 E Z ( C s — - f (a* - a-)) 
log*/ log« »r<»i<iog»/iog«\ log2 A; / 

(* > Cn). 

For fli>z>2 we have 

g ( a ' i - «••) = g(a)g(a«"*«- 1); 

with A: =î/i-zi2we get 
tf .2 

52(^, a) < Cio(a) 
logo: 

( x \ 2 log# _ 

lOg^ # / lOg a h<log «/log a 

For (a, d) = 1, let e(a, d) denote the exponent of a mod d (i.e., the cer
tainly existing smallest MEN with 0,*=! mod d); then d| (ah— 1) im
plies (a, d) = l/\e(a, d) I ft. Therefore, 

E «V-D= E E J- E y 
/ i<log*/logo /Klog a/log a di | (o f c- l) ö l ^ l ^ - D ^2 

^ E E 7V 2 1 
di<* d2<* # l # 2 A<log a /log a 

p(dl)?£0 M(̂ 2)7^0 ftsOmod e(a,di) 
(dl,o)—1 (d2 ,a)«l A s 0 mod e (a,da) 

logo di<x di<z did2[e(a} di),e(a, d2)] 

(d i . a ) - l (d 2 , a ) - l 

^ ~ - / E d-i(eM)-uK 
log a I d<* I < CioWloga?, 

\ M<<*>*0 / 
X ( d , a ) - l ' 

since [a, b]2^ab and since, for an arbitrary positive increasing func
tion ƒ, 
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ti df(d) 
implies 

E J 7 7 — T < C , i ( a l / ) 

[3, Satz 3] . Hence, we have 
x2 

(5) S2(x, a) < C22(a) - (* > C17). 
logo; 

(4), (5), and (1) with index 2 instead of 1 give the desired result. 
I t is not difficult to give an explicit dependence of Cn(a) and Cu(a) 

on a. Again, since 

A2(x,a) g A{ph p2, v: plt2 < x A av < x} 

( x V logff 
ft- ) -*- (*>2), 

log*/ log a 
Theorem 2 is best possible in x. 

4. Generalization to algebraic number fields K. For convenience, 
let K be a totally real algebraic number field. Denote by n the degree 
of K, by J(K) the ring of all integers of K, by small Greek letters ele
ments of J(K), by £ ( 1 \ • • • , £(w) the conjugates of £, and by %<x 
the system | £ ( ; ) | <x (j=l, • • • , n). w is called a prime if TT generates 
a prime ideal of J(K). Combining the method used above with ideas 
of [4], we arrive at direct generalizations of Theorem 1 and Theorem 
2: 

THEOREM 1'. For KaÇzN there exist constants C%i(Kf 0) and 
C2i(K, a) such that x>C2z(K, a) implies 

A{<ry r : cr = TTI + va A r = TT2 + va A ^1,2 prime A m,* < % A v < xlfa} 

> Cu(K, a)x*\ 

THEOREM 2'. For O^a&JÇK) and not a root of unity there exist 
constants C25CK, a) and C26(i£, cc) such that x>C2$(K> a) implies 

A {cr, r : a = TTI + ot° A f = ^2 + ctv A ^1,2 prime A ^1,2 

a2n 

> Ct%(K, a) 
logo; 

Again, the estimates are best possible in x. 
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THE COHOMOLOGY OF CERTAIN ORBIT SPACES1 

BY P. A. SMITH 

Communicated by Deane Montgomery, March 11, 1963 

Let (G, X) be a topological transformation group—or action—in 
which G is finite and X is locally compact. An important part of the 
cohomology of the orbit space X/G lies, so to speak, in the free part f 
of the action (i.e. the union of orbits of cardinality [G: l ] ) . The 
cohomology of i/G can be regarded as an H(G) -module. We shall ex
hibit a complete set of generators and relations for this module as
suming G to be the direct product of cyclic groups of prime order p 
and X to be a generalized sphere over Zp (see [4, p. 404]). H will al
ways denote cohomology with values in Zv. A useful device consists 
in relating the generators of H(G) to those of G. 

Dimension functions. From now on let G—ZPX • • • XZP, r fac
tors, and let g»- be the collection of subgroups of order p{; go consists 
of the identity only. Let g, h, • • • always denote subgroups of G and 
gi, hi, • * • elements of gi. In particular g0= {l} and gr = G. 

By a dimension f unction of the pair (G, p) we shall mean an integer-
valued function n(g) of constant parity with values à — 1 and such 
that for each g different from G 

(1) n{g) = n(G) + D (»(*) - n(G)) 
h 

summed over those h's which lie in gr_i and contain g; when p = 2, 
constant parity is not required. 

For a given dimension function n(g) let Q be the totality of se-
x This work has been supported by the Office of Naval Research. 


