References

1. E. Landau, Ueber einige neuere Fortschritte der additiven Zahlentheorie, Cambridge Univ. Press, Cambridge, 1937.
2. Karl Prachar, Primzahlverteilung, Springer, Berlin, 1957.
3. G. J. Rieger, Verallgemeinerung eines Sätzes von Romanov und anderes, Math. Nachr. 20 (1959), 107-122.
4. -_, Verallgemeinerung zweier Sätze von Romanov aus der additiven Zahlentheorie, Math. Ann. 144 (1961), 49-54.

Purdue University and University of Munich

THE COHOMOLOGY OF CERTAIN ORBIT SPACES ${ }^{1}$

BY P. A. SMITH
Communicated by Deane Montgomery, March 11, 1963

Let (G, X) be a topological transformation group-or action-in which G is finite and X is locally compact. An important part of the cohomology of the orbit space X / G lies, so to speak, in the free part f of the action (i.e. the union of orbits of cardinality [$G: 1]$). The cohomology of f / G can be regarded as an $H(G)$-module. We shall exhibit a complete set of generators and relations for this module assuming G to be the direct product of cyclic groups of prime order p and X to be a generalized sphere over Z_{p} (see [4, p. 404]). H will always denote cohomology with values in Z_{p}. A useful device consists in relating the generators of $H(G)$ to those of G.

Dimension functions. From now on let $G=Z_{p} \times \cdots \times Z_{p}, r$ factors, and let g_{i} be the collection of subgroups of order $p^{i} ; g_{0}$ consists of the identity only. Let g, h, \cdots always denote subgroups of G and g_{i}, h_{i}, \cdots elements of g_{i}. In particular $g_{0}=\{1\}$ and $g_{r}=G$.

By a dimension function of the pair (G, p) we shall mean an integervalued function $n(g)$ of constant parity with values $\geqq-1$ and such that for each g different from G

$$
\begin{equation*}
n(g)=n(G)+\sum_{h}(n(h)-n(G)) \tag{1}
\end{equation*}
$$

summed over those h 's which lie in g_{r-1} and contain g; when $p=2$, constant parity is not required.

For a given dimension function $n(g)$ let Ω be the totality of se-

[^0]quences $\omega=\left(g_{1}, \cdots, g_{r}\right)$ such that $g_{i} \subset g_{i+1}, n\left(g_{i}\right)>n\left(g_{i+1}\right), i=1, \cdots$, $r-1$. Call $n(g)$ effective if Ω is nonempty.

In any action (G, X) denote by $F(g)$ the fixed-point set of g. If X is a generalized N-sphere over Z_{p} then $F(g)$ is a generalized k-sphere over Z_{p} with $k=-1$ if $F(g)$ is empty. It is known [1, Chapter XII] that the function $n(g)=k$ is a dimension function with $n\left(g_{0}\right)=N$. We shall call this $n(g)$ the dimension function of (G, X); it is effective if and only if (G, X) is effective (i.e. if the free part is nonempty). The relations (1) were obtained by Borel [1, Chapter XIII].

Generators and relations. Let $n(g)$ be an effective dimension function and let F be the free $H(G)$-module which has the elements of Ω as free generators. The elements of F are of the form $\sum_{\omega} \lambda_{\omega} \omega$ where $\lambda_{\omega} \in H(G)$. We grade F by assigning the degree $n(G)+r$ to each ω and taking $\operatorname{deg} \lambda_{\omega} \omega=\operatorname{deg} \lambda_{\omega}+\operatorname{deg} \omega$. We shall define subsets R_{1}, R_{2} of F. R_{1} consists of all elements

$$
\begin{equation*}
\sum_{h_{i}}\left(g_{1}, \cdots, h_{i}, \cdots, g_{r}\right) \quad(i=1, \cdots, r-1) \tag{2}
\end{equation*}
$$

where the g 's are such that the set g_{i}^{\prime} of h_{i} 's for which $\left(g_{1}, \cdots, h_{i}, \cdots, g\right) \in \Omega$ is not empty, and the summation is over g_{i}^{\prime}. To define R_{2}, choose a fixed base $t=\left(t_{1}, \cdots, t_{r}\right)$ for G and for each $\omega=\left(g_{1}, \cdots, g_{r}\right) \in \Omega$ choose a base $s(\omega)$ associated with ω, namely a base (s_{1}, \cdots, s_{r}) of G the first i elements of which generate $g_{i}(i=1, \cdots, r)$. In addition choose a base for $H(G)$, namely a set of elements u_{i} of degree 1 and v_{i} of degree $2(i=1, \cdots, r)$ such that $\left\{u_{i}, v_{i}\right\}$ generates the algebra $H(G)$ (when $p=2$, a base consists of r elements of degree 1 only). The s_{i} in $s(\omega)$ are uniquely expressible as $s_{i}=t_{1}^{p_{i 1}} \cdots t_{r}^{p_{i}}$. Let $P(\omega)$ be the matrix $\left(p_{i j}\right)$. We shall define R_{2} only for the case $p>2$: it consists of all elements

$$
\begin{equation*}
V_{i}^{a_{i}} U_{i+1} V_{i+1}^{b_{i+1}} \cdots U_{r} V_{r}^{b_{r}} \omega \quad(i=1, \cdots, r ; \omega \in \Omega) \tag{3}
\end{equation*}
$$

The U 's and V 's depend on ω and are given by

$$
U_{j}=\sum q_{j k} u_{k}, \quad V_{j}=\sum q_{j k} v_{k}
$$

where $Q(\omega)=\left(q_{j k}\right)$ is the transposed inverse of $P(\omega)$. The a 's and b 's are:

$$
a_{i}=a_{i}(\omega)=\frac{1}{2}\left(n\left(g_{r-i-1}\right)-n\left(g_{r-i}\right)\right), \quad b_{i}=a_{i}-1 \quad(i=1, \cdots, r)
$$

Let $A_{n(g)}=F / R$ where R is generated additively by $R_{1} \cup R_{2}$. It is easily shown that $A_{n(g)}$ depends only on $n(g)$.

Theorem. Let $n(g)$ be the dimension function of an effective action
(G, X) where X is a generalized sphere over Z_{p} and let f be the free part of the action. The $H(G)$-modules $A_{n(g)}$ and $H(\mathrm{f} / G)$ are isomorphic. Every effective dimension function $n(g)$ is the dimension function of an effective orthogonal action (G, S) where $N=n\left(g_{0}\right)$.

Remark. The elements in $R_{1} \cup R_{2}$ are not necessarily linearly independent and therefore $R_{1} \cup R_{2}$ can generally be replaced by a proper subset. It can be shown for example that when $r=2$, the index i in (3) need only take the value 1 . Thus when $r=2$, we may take for R_{2} the elements $V_{1}^{a_{1}} \omega, \omega \in \Omega$.

An example. Let $r=2, p=3$. g_{1} consists of four subgroups,-call them g^{1}, \cdots, g^{4} omitting the subscript 1. Let $n\left(g_{0}\right)=9, n\left(g^{1}\right)$ $=n\left(g^{2}\right)=n\left(g^{8}\right)=1, n\left(g^{4}\right)=3, n\left(g_{2}\right)=n(G)=-1$. This defines a dimension function $n(g)$ for G and $n(g)$ is effective: $\Omega=\left\{\omega_{i}\right\}$ where $\omega_{i}=\left(g^{i}, g_{2}\right)$, $i=1, \cdots, 4 . R_{1}$ consists of the single element $\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}$. We take R_{2} as in the Remark. Simple calculations give R_{2} $=\left\{v_{2} \omega_{1},\left(-v_{1}+v_{2}\right) \omega_{2},\left(v_{1}+v_{2}\right) \omega_{3}, v_{1}^{2} \omega_{4}\right\}$. Evidently $A_{n(g)}=F^{\prime} / R^{\prime}$ where F^{\prime} is generated by $\omega_{1}, \omega_{2}, \omega_{3}$ and R^{\prime} by

$$
\begin{equation*}
v_{2} \omega_{1}, \quad\left(-v_{1}+v_{2}\right) \omega_{2}, \quad\left(v_{1}+v_{2}\right) \omega_{3}, \quad v_{1}^{2}\left(\omega_{1}+\omega_{2}+\omega_{3}\right) \tag{4}
\end{equation*}
$$

It can be verified that $A_{n(g)}$ agrees with known formulas [3] for $H(\mathrm{f} / G)$. It is known for example that $H^{n}(\mathrm{f} / G)$ is cyclic when $n=n\left(g_{0}\right)$ and is trivial for larger n. To see how this works out in the present example where $n\left(g_{0}\right)=9$, one verifies first that all elements $\lambda \omega_{i}$ in F^{\prime} of degree greater than 7 in which λ is a polynomial in v_{1}, v_{2} alone, is in R^{\prime}. For example

$$
-v_{1}^{4} \omega_{1}=v_{1}^{2} v_{2} r_{1}+\left(v_{1}^{3}+v_{1}^{2} v_{2}\right) r_{2}+\left(v_{1}^{2} v_{2}-v_{1}^{3}\right) r_{3}+\left(v_{1}^{2}-v_{2}^{2}\right) r_{4},
$$

where r_{1}, \cdots are the elements in (4). Now $u_{1}^{2}=u_{2}^{2}=0$ since the u 's are of odd degree. It follows readily that all elements of F^{\prime} of degree >9 are in R^{\prime}. As for the degree 9 , it is easily shown that the element $e=u_{1} u_{2} v_{1}^{3} \omega_{1}$ is not in R^{\prime}. Moreover if e_{1} is of degree 9 then $e_{1}=x e \bmod R^{\prime}$ where $x \in Z_{p}$. For example

$$
u_{1} u_{2} v_{1}^{3} \omega_{2}=u_{1} u_{2} v_{1}^{8} \omega_{1}+u_{1} u_{2}\left(v_{1}^{2} r_{1}+\left(v_{2}^{2}+v_{1} v_{2}-v_{1}^{2}\right) r_{2} v_{1}^{2} r_{3}-\left(v_{1}+v_{2}\right) r_{4}\right) .
$$

The structure of $A_{n(g)}$ in lower degrees can be determined just as readily and compared with the results in [3].
$H(G)$-modules. Let $C=\left(C^{n}\right)_{n \geq 0}$ be the graded Z_{p}-module in which each C^{n} is the group ring $Z_{p}\left(Z_{p}\right)$. Let $t=\left(t_{1}, \cdots, t_{r}\right)$ be a base for G and let

$$
C_{t}=C_{(1)} \otimes \cdots \otimes C_{(r)}
$$

where the $C_{(i)}$ are copies of C. Convert C_{t} to a G-module by the action

$$
\gamma\left(c_{1} \otimes \cdots \otimes c_{r}\right)=\gamma_{1} c_{1} \otimes \cdots \otimes \gamma_{r} c_{r}
$$

$(\gamma \in G)$
where γ_{i} is the t_{i}-component of γ. Define coboundaries in C_{t} by taking $d_{i}^{n}: C_{(i)}^{n} \rightarrow C_{(i)}^{n+1}$ to be multiplication by $\sigma\left(t_{i}\right)=1+t_{i}+\cdots+t_{i}^{p-1}$ when n is odd and by $1-t_{i}$ when n is even. C_{t} is now a free acyclic G-complex of cochains. Let

$$
u_{i}(t)=1 \otimes \cdots \otimes \sigma\left(t_{i}\right) \otimes \cdots \otimes 1 \quad(i=1, \cdots, r)
$$

where the 1 's are of degree zero, $\sigma\left(t_{i}\right)$ of degree 1 and let $v_{i}(t)$ be the same except that $\sigma\left(t_{i}\right)$ is of degree 2 . On introducing products in the usual way [2, p. 252] C_{t} becomes an algebra which induces an algebra $H\left(C_{t}\right)^{a}$ where $\left(C_{t}\right)^{G}$ consists of the invariant elements of C_{t}. The elements of $H\left(C_{t}\right)^{G}$ represented by $\left\{u_{i}(t), v_{i}(t)\right\}$ (by $\left\{u_{i}(t)\right\}$ only when $p=2$) form a base β_{t}. Let $s=\left(s_{1}, \cdots, s_{r}\right)$ be a base for G. Now let G act diagonally on $C_{s} \otimes C_{t}$. The equivariant map $C_{t} \rightarrow C_{s} \otimes C_{t}$ defined by $c_{t} \rightarrow \epsilon(s) \otimes c_{t}$ where $\epsilon(s)=1 \otimes \cdots \otimes 1 \in C_{8}^{0}$, is known to induce an algebra isomorphism $H\left(C_{t}\right)^{G} \rightarrow H\left(C_{s} \otimes C_{t}\right)^{G}$ and there is also an isomorphism $H\left(C_{s}\right)^{a} \rightarrow H\left(C_{s} \otimes C_{t}\right)^{G}$. We introduce into $\mathrm{U}_{t} H\left(C_{t}\right)$ an equivalence which is compatible with multiplication: if $a \in H\left(C_{s}\right)^{G}, b \in H\left(C_{t}\right)^{G}$ then $a \sim b$ if a and b have equal images in $H\left(C_{s} \otimes C_{t}\right)^{G}=H\left(C_{t} \otimes C_{s}\right)^{G}$. We take for $H(G)$ the algebra of equivalence classes. There is a canonical isomorphism $\phi_{t}: H\left(C_{t}\right)^{G} \rightarrow H(G)$ for every t. The images in $H(G)$ of the elements of β_{t} give a base β_{t} $=\left\{u_{i}(t), v_{i}(t)\right\}$ for $H(G)$.

Proposition 1. Let s, t be bases for G and let $s_{i}=t^{p_{i 1}} \cdots t^{p_{i r}}$, $i=1, \cdots, r$. Then $u_{i}(s)=\sum q_{i j} u_{j}(t), v_{i}(s)=\sum q_{i j} v_{j}(t)$ where $Q=\left(q_{i j}\right)$ is the transposed inverse of $P=\left(p_{i j}\right)$. (When $p=2$, the v 's do not appear.)

The orbit space of f . Let (G, X) be an action and let $C^{\prime}(X)$ be the Alexander-Spanier cochains of X with values in Z_{p} modulo those with empty supports. Let $\mathbf{C}(X)$ be the compactly supported elements of $\mathbf{C}^{\prime}(X)$. Let f be the free part of the action. $\boldsymbol{C}(\mathrm{f})$ is a free G-module and $H(\mathrm{f} / G)$ can be identified with $H(\mathbf{C}(\mathrm{f}))^{G}$. The map $\psi_{t}: \mathbf{C}(\mathrm{f})$ $\rightarrow C_{t} \otimes \mathbf{C}(\mathrm{f})$ defined by $\mathrm{c} \rightarrow \epsilon(t) \otimes \mathrm{c}$ induces an isomorphism $H(\mathrm{f} / G)$ $\rightarrow H\left(C_{t} \otimes \mathbf{C}(\mathrm{f})\right)^{G}$. Thus an element x in $H(\mathrm{f} / G)$ can be regarded as an equivariant cohomology class of $C_{t} \otimes \mathbf{C}(\mathrm{f})$. It can be verified that the map $C_{t} \otimes\left(C_{t} \otimes \mathbf{C}(\mathrm{f})\right) \rightarrow C_{t} \otimes \mathbf{C}(\mathrm{f})$ defined by $c \otimes\left(c^{\prime} \otimes x\right)$ $\rightarrow c c^{\prime} \otimes x\left(c, c^{\prime} \in C_{t}, x \in \mathbf{C}(\mathrm{f})\right)$ induces an action by $H\left(C_{t}\right)^{ब}$ on
$H\left(C_{t} \otimes \mathbf{C}(\mathrm{f})\right)^{G}$, hence on $H(\mathrm{f} / G)$ such that $H(\mathrm{f} / G)$ is an $H\left(C_{t}\right)^{\sigma_{-}}$ module. Through the isomorphism $\psi_{t}, H(f / G)$ becomes an $H(G)$ module; the action by $H(G)$ on $H(\mathrm{f} / G)$ is independent of t.

Derivation of R_{2}. For each subgroup g of G there is an induced action ($G / g, F(g)$). We denote its free part by $\mathrm{f}(g)$ agreeing that $\mathrm{f}\left(g_{r}\right)=F\left(g_{r}\right)$. Now assume that (G, X) is effective and let $\omega=\left(g_{1}, \cdots, g_{r}\right)$ be an element of Ω. Let $s(\omega)=\left(s_{1}, \cdots, s_{r}\right)$ be associated with ω and let h_{j} be the subgroup generated by $s^{j}=\left(s_{r-j+1}, \cdots, s_{r}\right)$. The induced action $\left(h_{j}, F\left(g_{r-j}\right)\right)$ can be identified with $\left(G / g_{r-j}, F\left(g_{r-j}\right)\right.$) and hence $\mathrm{f}\left(g_{r-j}\right)$ is the free part of ($h_{j}, F\left(g_{r-j}\right)$) and $H\left(\mathrm{f}\left(g_{r-j}\right) / h_{j}\right)$ is an $H\left(h_{j}\right)$-module.

Proposition 2. There exist maps of degree 1

$$
H\left(\mathrm{f}\left(g_{r}\right)\right) \xrightarrow{\alpha_{r}} H\left(\mathrm{f}\left(g_{r-1}\right) / h_{1}\right) \xrightarrow{\alpha_{r-1}} H\left(\mathrm{f}\left(g_{r-2}\right) / h_{2}\right) \rightarrow \cdots \rightarrow H(\mathrm{f} / G)
$$

such that for $x \in H\left(f\left(g_{r-j}\right) / h_{j}\right)$,

$$
\begin{equation*}
\alpha_{r-j} u_{i}\left(s^{j}\right) x=u_{j}\left(s^{j+1}\right) \alpha_{r-j} x, \quad j=0, \cdots, r-1, i=1, \cdots j . \tag{5}
\end{equation*}
$$

If $p>2$, the same relation holds with u replaced by v.
The α 's are essentially connecting homomorphisms in the cohomology sequences for certain pairs.

Proposition 3. Let t be a fixed base for G and (G, X) be an action. Let $n(g) \geqq-1$ be an integer-valued function, of constant parity if $p>2$, and such that $F(g)=\varnothing$ when $n(g)=-1$ and $H^{n}(\mathrm{f}(\mathrm{g}) / h)=0(h=G / g)$ whenever $n>n(g)$. Let $g_{1} \subset g_{2} \subset \cdots \subset g_{r}$ be subgroups of G and η an element of $H^{n\left(g_{r}\right)}\left(\mathrm{f}\left(g_{r}\right)\right)$ and let

$$
\begin{equation*}
w\left(g_{1}, \cdots, g_{r}\right)=\alpha_{1} \cdots \alpha_{r} \eta \tag{6}
\end{equation*}
$$

The expressions (3) are annulled when ω is replaced by the corresponding w and u_{i} by $u_{i}(t), v_{i}$ by $v_{i}(t)$.

Proof for the case $p>2$. It will be seen that

$$
y=v_{i}\left(s^{i}\right)^{a_{i}} \alpha_{i} u_{i+1}\left(s^{i+1}\right) v_{i+1}\left(s^{i+1}\right)^{b_{i+1}} \alpha_{i+1} \cdots \alpha_{r} u_{r}\left(s^{r-1}\right) v_{r-1}\left(s_{r-1}\right)^{b_{r-1}} \alpha_{r} \eta
$$

lies in $H\left(\mathrm{f}\left(g_{r-1}\right) / h_{r-i+1}\right)$ and is of degree

$$
2\left(a_{i}+b_{i+1} \cdots+b_{r}\right)+(r-i)+(r-i+1)=n\left(g_{i-1}\right)+1
$$

hence is zero. Hence $\alpha_{1} \cdots \alpha_{i-1} y=0$. On transferring the α 's to the right by (5) we obtain

$$
v_{i}(s)^{a_{i}} u_{i+1}(s) \cdots u_{r}(s) v_{r}(s)^{b_{r} w}=0
$$

From Proposition 1 we have $v_{i}(s)=V_{i}, u_{i+1}(s)=U_{i+1}$, etc. which completes the proof.

Now let X be a generalized sphere over Z_{p} and let $n(g)$ be the dimension function of (G, X) assumed to be effective. Let η be a nonzero element of $H^{n\left(g_{r}\right)}(\mathrm{f}(G))$ and let

$$
W=\left\{w\left(g_{1} \cdots g_{r}\right),\left(g_{1}, \cdots, g_{r}\right) \in \Omega\right\}
$$

where w is given by (6). (In case $F(g)=\varnothing$, replace $\alpha_{r} \eta$ by any nonzero element of $H^{0}\left(g_{r-1}\right)$.) It can be shown that W generates the $H(G)$ module $H(F / G)$ and that its elements annul the expressions (2) when substituted for the corresponding ω 's (the proof of this last does not involve $H(G)$). From Proposition 3 the expressions (3) are also annulled. It follows that there is a natural homomorphism $\mu: A_{n(g)}$ $\rightarrow H(\mathrm{f} / G)$ which is surjective. An argument based on [3] shows that μ is also injective.

References

1. A. Borel, Seminar on transformation groups, Annals of Mathematics Studies No. 46, Princeton Univ. Press, Princeton, N. J., 1960.
2. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956.
3. P. A. Smith, Orbit spaces of finite abelian transformation groups, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1662-1667.
4. -_, New results and old problems in finite transformation groups, Bull. Amer. Math. Soc. 66 (1960), 401-415.

Columbia University

[^0]: ${ }^{1}$ This work has been supported by the Office of Naval Research.

