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Let (G, X) be a topological transformation group—or action—in 
which G is finite and X is locally compact. An important part of the 
cohomology of the orbit space X/G lies, so to speak, in the free part f 
of the action (i.e. the union of orbits of cardinality [G: l ] ) . The 
cohomology of i/G can be regarded as an H(G) -module. We shall ex
hibit a complete set of generators and relations for this module as
suming G to be the direct product of cyclic groups of prime order p 
and X to be a generalized sphere over Zp (see [4, p. 404]). H will al
ways denote cohomology with values in Zv. A useful device consists 
in relating the generators of H(G) to those of G. 

Dimension functions. From now on let G—ZPX • • • XZP, r fac
tors, and let g»- be the collection of subgroups of order p{; go consists 
of the identity only. Let g, h, • • • always denote subgroups of G and 
gi, hi, • * • elements of gi. In particular g0= {l} and gr = G. 

By a dimension f unction of the pair (G, p) we shall mean an integer-
valued function n(g) of constant parity with values à — 1 and such 
that for each g different from G 

(1) n{g) = n(G) + D (»(*) - n(G)) 
h 

summed over those h's which lie in gr_i and contain g; when p = 2, 
constant parity is not required. 

For a given dimension function n(g) let Q be the totality of se-
x This work has been supported by the Office of Naval Research. 



564 P. A. SMITH [July 

quencesco=(gi, • • • , gr) such that giCgi+u n(g%) >n(gi+1),i=l, • • • , 
r— 1. Call n(g) effective if Q, is nonempty. 

In any action (G, X) denote by F(g) the fixed-point set of g. If X 
is a generalized iV-sphere over Z p then F(g) is a generalized ^-sphere 
over Zp with fe= — 1 if F(g) is empty. It is known [l, Chapter X I I ] 
that the function n(g) =k is a dimension function with n(go) = N. We 
shall call this n(g) the dimension function of (G, X) ; it is effective if 
and only if (G, X) is effective (i.e. if the free part is nonempty). The 
relations (1) were obtained by Borel [l, Chapter X I I I ] . 

Generators and relations. Let n(g) be an effective dimension func
tion and let F be the free H(G) -module which has the elements of 0 
as free generators. The elements of F are of the form ^ t ó Xwco where 
Xw£i?(G). We grade F by assigning the degree n(G)+r to each co 
and taking deg Xwco = deg Xw+deg co. We shall define subsets i?i, R2 of 
F. Ri consists of all elements 

(2) Z (f i, • • • , hi, • • • , gr) (» = 1, • • • , r - 1) 
hi 

where the g's are such that the set gl of hi's for which 
(gii • • • , A», • • • , g )£ f l is not empty, and the summation is over 
g!. To define i?2, choose a fixed base t=(h, • • • , tr) for G and for 
each o) = (gi, • • • , g>) £ 0 choose a base s(co) associated with co> namely 
a base ($i, • • • , sr) of G the first i elements of which generate 
gi (i= 1, • • • , r). In addition choose a base for H(G), namely a set of 
elements Ui of degree 1 and Vi of degree 2 ( i = l , • • • , r) such that 
{^t, Vi\ generates the algebra H(G) (when p = 2, a base consists of r 
elements of degree 1 only). The Si in s(u>) are uniquely expressible as 
Si^t^1 • • • fr

ir. Let P(co) be the matrix (pi3). We shall define R2 only 
for the case p>2:it consists of all elements 

(3) v7ui+1V%ï • • • UrV
brro> (i = 1, • • • , r; co £ 0). 

The U's and V's depend on co and are given by 

Uj = X ÇjkUk, Vj = X ?ƒ*»* 

where (?(co) = (g^) is the transposed inverse of P(co). The a's and 6's 
are: 

ai = a*(co) = ï(w(^ r-^i) - n(gr-i)), bi = at— 1 (i = 1, • • • , r). 

Let An(Q) = F/R where R is generated additively by i?iWi?2. I t is 
easily shown that An(g) depends only on n(g). 

THEOREM. Let n(g) be the dimension function of an effective action 
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(G, X) where X is a generalized sphere over Zp and let i be the free part 
of the action. The H (G)-modules An(0) and H{i/G) are isomorphic. 
Every effective dimension f unction n(g) is the dimension f unction of an 
effective orthogonal action (G, S) where N=n(go). 

Remark. The elements in RiUR2 are not necessarily linearly inde
pendent and therefore R1UR2 can generally be replaced by a proper 
subset. I t can be shown for example that when r = 2, the index i in 
(3) need only take the value 1. Thus when r = 2, we may take for R2 
the elements F^co, co£0. 

An example. Let r = 2, p~3. gi consists of four subgroups,—call 
them g1, • • • , gA omitting the subscript 1. Let w(go)=9, nig1) 
=zn(g2)=n(gz) = 1, n(gA) = 3, w(g2) = »(G) = — 1. This defines a dimen
sion function n(g) for G and n(g) is effective : Q = {o>f-} where o)i = (g\ g2), 
i = l , • • • , 4. Ri consists of the single element CO1+W2+CO3+CO4. We 
take R2 as in the Remark. Simple calculations give R2 
= { w i , ( — tfi+2>2)co2, (VI+V2)Ü)Z, fl?co4}. Evidently An^) — Ff/Rf where 
Ff is generated by coi, C02, C03 and .R' by 

2 

( 4 ) fl2Wl, ( — » 1 + 02)CO2, (*>1 + ^2)C03, Vl(cOi + C02 + W3). 

It can be verified that An(Q) agrees with known formulas [3] for 
H(î/G). I t is known for example that Hn(i/G) is cyclic when n = n(go) 
and is trivial for larger n. To see how this works out in the present 
example where n(go) = 9 , one verifies first that all elements Xco* in F ' 
of degree greater than 7 in which X is a polynomial in V\, V2 alone, is in 
R'. For example 

4 2 3 2 2 3 2 2 
—vim = viv2ri + (vi + vm)r2 + (viv2 — vi)rz + (vi — z>2)r4, 

where ri, • • • are the elements in (4). Now ul = ul = 0 since the u's are 
of odd degree. I t follows readily that all elements of F' of degree > 9 
are in R'. As for the degree 9, it is easily shown that the element 
e = UiU2vlœi is not in JR'. Moreover if e± is of degree 9 then ei = xe mod R' 
where # £ Z P . For example 

3 3 2 2 2 2 
UiU2ViO)2 = U1U2V1CO1 + UiU2(vifi + (»2 + ViV2 ~ »l)f2Ï>if8 " " ( v l + f 2 ) f4 ) . 

The structure of ^4n(ö) in lower degrees can be determined just as 
readily and compared with the results in [3]. 

jff(G)-modules. Let C=(Cn)wào be the graded Z^-module in which 
each Cn is the group ring ZP(ZP). Let / = ($i, • • • , tr) be a base for 
G and let 
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C% = C(i) ® • • • ® C(r) 

where the C^ are copies of C. Convert Ct to a G-module by the action 

y(ci ® • • • ®£r) = 7i<;i ® • • • <S> 7r<V (7 G G) 

where 7; is the ^-component of 7. Define coboundaries in Ct by taking 
<%: Cgj-^C^"1 to be multiplication by (r(^) = l + ^ + • • • +t^1 when 
w is odd and by 1—U when w is even. Ct is now a free acyclic G-com-
plex of cochains. Let 

Ui(f) = 1 ® • • • ® a(U) ® • • • ® 1 (i = 1, • • • , r) 

where the l ' s are of degree zero, a(ti) of degree 1 and let Vi(t) be the 
same except that a(U) is of degree 2. On introducing products in the 
usual way [2, p. 252] Ct becomes an algebra which induces an alge
bra H(Ct)

G where (Ct)° consists of the invariant elements of Ct* The 
elements of H(Ct)° represented by {#»•(£)» *>$)} (by {w^(/)} only 
when p = 2) form a base /?*. Let 5 = ($i, • • • , sr) be a base for G. Now 
let G act diagonally on Cs®Ct. The equivariant map Ct—*Ca®Ct 
defined by ct—>e(s)®ct where €(s) = l ® • • • <8>1£C°, is known to 
induce an algebra isomorphism H(Ct)

G—>H(Cs®Ct)
G and there is 

also an isomorphism H(Cs)
G-*H(C8®Ct)G. We introduce into 

\JtH(Ct) an equivalence which is compatible with multiplication: if 
aÇE.H(Cs)G, bÇzH(Ct)0 then a~b if a and b have equal images in 
H(C8®Ct)

G = H(Ct®Cs)°. We take for H(G) the algebra of equiva
lence classes. There is a canonical isomorphism <j>t: H(Ct)G—>H(G) for 
every t. The images in H(G) of the elements of j8* give a base jS* 
= {«*(*)> f<(0} for fiT(G). 

PROPOSITION 1. Let s, £ 6e bases for G and let Si = tpil • • • tvir> 
i = 1, • • • , r. Then Ui(s) = *%2qijUj(t), Vi(s) = ^Qifijif) where Q=(qij) is 
the transposed inverse of P = (pij). (When p = 2, the v's do not appear.) 

The orbit space of f. Let (G, X) be an action and let C(X) be the 
Alexander-Spanier cochains of X with values in Zv modulo those with 
empty supports. Let C(X) be the compactly supported elements of 
C'(X). Let f be the free part of the action. C(f) is a free G-module 
and H(i/G) can be identified with H(C(i))°. The map x[/t: C(f) 
—*Ct®C(i) defined by c—>e(t)®c induces an isomorphism H(î/G) 
-J>H(Ct®C(î))°. Thus an element x in H(i/G) can be regarded as 
an equivariant cohomology class of C*®C(f). I t can be verified that 
the map Ct ® (Ct ® C(f)) -» Ct ® C(f) defined by c ® (c' ® a) 
—>cc/®»(cf c'(ECt, *GC(f)) induces an action by H(Ct)

G on 
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H(Ct®C(î))°, hence on H(i/G) such that H($/G) is an H(Ct)
a-

module. Through the isomorphism \//h Hii/G) becomes an H(G)-
module; the action by H(G) on H(i/G) is independent of L 

Derivation of R2. For each subgroup g of G there is an induced 
action (G/g, F(g)). We denote its free part by f(g) agreeing that 
f(gr) = F(gr). Now assume that (G, X) is effective and let 
w= (gi, • • • , gr) be an element of Q. Let s(co) = ($1, • • • , sr) be asso
ciated with co and let hj be the subgroup generated by 
$*=(sr-y+i, • • • , sr). The induced action (fey, F(gr-j)) can be identi
fied with (G/gr-i, F(gr~j)) and hence f(gr-i) is the free part of 
(Ay» F(gr-j)) and H(î(gr-j)/hj) is an JEf(Ay)-module. 

PROPOSITION 2. TAere m t f wa^5 #ƒ degree 1 

H(i(gr)) S tf(f(fr-0/*i) ^X H(î(gr^)/h2) -> >ff(f/G) 

swcft that for x(E.H(î(gr-j) /h3), 

(5) Or-jUi(sl)x = Uj(s'+1)ar-jX, j = 0, • • • , r - 1, î = 1, • • •ƒ. 

If p>2, the same relation holds with u replaced by v. 

The a ' s are essentially connecting homomorphisms in the coho-
mology sequences for certain pairs. 

PROPOSITION 3. Let t be a fixed base f or G and (G, X) be an action. 
Let n(g)^—l be an integer-valued function, of constant parity if p > 2, 
and such that F(g) = 0 when n(g) = —1 and Hn(i(g)/h) = 0 (h~G/g) 
whenever n>n(g). Let giCg2C * • * Cgr be subgroups of G and rj an 
element of iîn(^ )(f(g r)) and let 

(6) w(gh • • • , gr) « a i . . . a r 7 ? . 

r&£ expressions (3) are annulled when o) is replaced by the correspond
ing w and ui by «»•(*)» Vi by Vi(t). 

PROOF FOR THE CASE p>2. It will be seen that 

y = Viis^aiUi+tis^v^iis^^^ai+i • • • cM^^^r- i fcr - i ) 6 ' " 1 ^ 

lies in H(i(gr-i)/hr-i+i) and is of degree 

2(a, + bi+l • • • + br) + (r - i) + (r - i + 1) - *(g<_0 + 1 

hence is zero. Hence a\ • • • c*»_i;y = 0. On transferring the a ' s to the 
right by (5) we obtain 
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Vi(s)aiU{+i(s) • • • ur(s)vr(s)hrw = 0. 

From Proposition 1 we have Vi(s) — Vu Ui+i(s) = Z7t-+i, etc. which com
pletes the proof. 

Now let X be a generalized sphere over Zp and let n(g) be the di
mension function of (G, X) assumed to be effective. Let rj be a non
zero element of Hn^(î(G)) and let 

W = {w( f t . . .gr), (gl9 • • - , g r ) e 0} 

where w is given by (6). (In case F(g) = 0 , replace arrj by any nonzero 
element of H°(gr~i).) It can be shown that W generates the H(G)~ 
module H(F/G) and that its elements annul the expressions (2) when 
substituted for the corresponding co*s (the proof of this last does not 
involve H(G)). From Proposition 3 the expressions (3) are also an
nulled. It follows that there is a natural homomorphism /x: An(0) 
—*H(î/G) which is surjective. An argument based on [3] shows that 
jit is also injective. 
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