BOUNDED APPROXIMATION BY POLYNOMIALS ${ }^{1}$

BY L. A. RUBEL AND A. L. SHIELDS
Communicated by Maurice Heins, April 22, 1963.

We announce a complete solution to the following problem. If G is an arbitrary bounded open set in the complex plane, which com-plex-valued functions in G can be obtained as the bounded pointwise limits in G of a sequence of polynomials?

Theorem. Given an arbitrary bounded open set G in the complex plane, and a complex-valued function f defined on G. There exists a sequence $\left\{p_{n}\right\}$ of polynomials that are uniformly bounded on G and that converge pointwise on G to f if and only if f has an extension F that is bounded and holomorphic on G^{*}, where G^{*} is the inside of the outer boundary of G.

More precisely, G^{*} is the complement of the closure of the unbounded component of the complement of the closure of G.

In a certain sense, this result lies somewhere between Runge's theorem and Mergelyan's theorem [3]. The correct formulation of our theorem is in terms of sequences, and not topological closure. Indeed, for a certain bounded open set G, there exists a function f and functions f_{n} such that (i) each f_{n} is the bounded limit of a sequence of polynomials, (ii) f is the bounded limit of f_{n}, but (iii) f is not the bounded limit of any sequence of polynomials.

With G and G^{*} as above, we write $B_{H}(G)$ for the set of bounded holomorphic functions on G, and $B_{H}\left(G^{*}: G\right)$ for the set of functions on G that have a bounded holomorphic extension to G^{*}, and $P(G)$ for the set of functions on G that can be boundedly approximated on G by a sequence of polynomials. The theorem now reads:

$$
P(G)=B_{H}\left(G^{*}: G\right)
$$

Even if G is connected and simply connected, it may happen that G^{*} has several components. We define $G^{\#}$ as the union of those components of G^{*} that intersect G. Clearly, $B_{H}\left(G^{*}: G\right)=B_{H}\left(G^{*}: G\right)$.

As a corollary to the theorem, we get a characterization of those bounded open sets G on which each bounded holomorphic function can be boundedly approximated by polynomials, namely $P(G)$ $=B_{H}(G)$ if and only if $B_{H}(G)=B_{H}\left(G^{*}: G\right)$; in other words, if and only if the inner boundary of G is a set of removable singularities for all bounded holomorphic functions on G. The inner boundary of

[^0]G is that part of the boundary of G that does not intersect the unbounded component of the complement of G closure.

For example, if G is the open unit disc, then $G^{*}=G$, and hence $P(G)=B_{H}(G)$. This is a classical result; in this case, the sequence of arithmetic means of the partial sums of the power series of f converges boundedly to f. A proof that $P(G) \supseteq B_{H}(G)$ if G is a Jordan domain is given in [2, pp. 3-5]. If G is the punctured unit disc, then $P(G)$ $=B_{H}(G)$, but if G is the unit disc with a radius removed, then $P(G)$ $\neq B_{H}(G)$. It may happen that $G=G^{\sharp}$, and consequently $P(G)=B_{H}(G)$, even though the closure of G separates the plane. This is the case if G is a spiral ribbon, with infinitely many turns, that winds down onto the unit disc.

The proof of the theorem is long, with complications arising if G has infinitely many components. We give here a crude sketch of a line of proof that works in the special case where G is connected, which is considerably easier than the general case. We must show that $P(G)=B_{H}\left(G^{\sharp}: G\right)$.

First, $P(G) \subseteq B_{H}\left(G^{\#}: G\right)$, since if the sequence $\left\{p_{n}\right\}$ of polynomials converges boundedly to f, then the p_{n} are uniformly bounded on the outer boundary of G, hence on the boundary of $G^{\#}$ also, and the p_{n} are consequently uniformly bounded in G^{*}. Hence, some subsequence converges on $G^{\#}$ to a bounded holomorphic function which must be an extension of f.

In the other direction, there exist simply connected regions G_{n}, with $G_{n+1} \subseteq G_{n}$, and the closure of $G^{\#}$ contained in each G_{n}. The regions G_{n} "squeeze down" onto $G^{\#}$ in the sense that G^{*} is the largest connected open superset of G that is contained in $\cap G_{n}$. We construct the regions G_{n} as the insides of a sequence of equipotential curves of the logarithmic equilibrium potential on G. By a theorem of Carathéodory [1, p. 76], if ϕ_{n} is the normalized mapping function of G_{n} onto the unit disc, then the ϕ_{n} converge to ϕ on $G^{\#}$, where ϕ is the normalized mapping function of $G^{\#}$. Given f in $B_{H}\left(G^{*}\right)$, the functions $f_{n}=f \circ \phi^{-1} \circ \phi_{n}$ converge boundedly in $G^{\#}$ to f. By Runge's theorem, f_{n} can be approximated on $G^{\#}$ by a polynomial p_{n}, with a uniform error at most $1 / n$. The polynomials p_{n} converge boundedly to f in $G^{\#}$, and a fortiori in G. Thus $B_{H}\left(G^{\sharp}: G\right) \subseteq P(G)$. This completes the sketch of the proof for the special case.

References

1. C. Carathéodory, Conformal representation, Cambridge Univ. Press, Cambridge, 1958.
2. T. Carleman, Über die Approximation analytischer Funktionen durch lineare

Aggregate von vorgegebenen Potenzen, Arkiv för Matematik, Astronomi och Fysik 17 (1922-1923), no. 9, 1-30.
3. S. N. Mergelyan, Uniform approximation to functions of a complex variable, Amer. Math. Soc. Transl. 101 (1954), 2-99.

Columbia University, University of Illinois, and University of Michigan

DOUBLY INVARIANT SUBSPACES OF ANNULUS OPERATORS

BY DONALD SARASON ${ }^{1}$
Communicated by P. R. Halmos, April 29, 1963

1. Introduction. Let C be the unit circle in the complex plane and let C_{0} be the circle $\left\{z:|z|=r_{0}\right\}$, where r_{0} is a positive real number less than unity. The set $C \cup C_{0}$ is the boundary of the annulus $A=\left\{z: r_{0}<|z|<1\right\}$. Let us endow the circles C and C_{0} with Lebesgue measure of total mass unity, and denote by $L^{2}(\partial A)$ the L^{2} space associated with the measure thereby defined on the set $C \cup C_{0}$. This note concerns the invariant subspaces of the position operator on the space $L^{2}(\partial A)$, that is, of the operator Z on $L^{2}(\partial A)$ defined by $(Z x)(z)$ $=z x(z)$.

We may regard $L^{2}(\partial A)$ as the direct sum of the two spaces $L^{2}(C)$ and $L^{2}\left(C_{0}\right)$. As subspaces of $L^{2}(\partial A)$, the latter reduce the operator Z. The restriction of Z to $L^{2}(C)$ is a well-known operator, a so-called bilateral shift (of unit multiplicity). The invariant subspaces of this operator have been extensively studied by Beurling [1], by Helson and Lowdenslager [3], and by Halmos [2]. The restriction of Z to $L^{2}\left(C_{0}\right)$ is a bilateral shift multiplied by the scalar r_{0}, and so has the same invariant subspace structure as a bilateral shift. The operator Z is therefore the direct sum of two operators whose invariant subspaces have been completely described. However, the problem of determining the invariant subspaces of Z involves more than merely a routine extension of known results about bilateral shifts, and as yet has not been solved completely.

[^1]
[^0]: ${ }^{1}$ This research was partially supported by the National Science Foundation.

[^1]: ${ }^{1}$ Research supported in part by the National Science Foundation. The results announced in this paper constitute a portion of the author's University of Michigan Doctoral Dissertation. I am deeply indebted to Professor Paul Halmos for the help he has given me over the past year.

