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A cell structure is a convenient means of describing a space; thus 
it is important to reduce such a structure to a simpler one when pos­
sible. For example, it remains unsolved whether a compact topo­
logical manifold (or more generally, ANR) has the homotopy type of 
a finite CW-complex. According to Milnor [2], this would follow 
from the conjecture that any CW-complex which is dominated by a 
finite complex has the homotopy type of a finite complex, but we 
show below that this is false. 

Let X be a connected CW-complex, with universal cover X, and 
fundamental group w with (integral) group ring A. Consider the 
following conditions: 

(i) X is dominated by a complex of finite type (i.e., one with a 
finite number of cells of each dimension), 

(ii) T and all Hi(X) are countable, 
(iii)Ar For N<i, Hi(X)=0 and #*(X;(B) = 0 for all coefficient bun­

dles (B (in the sense of Steenrod ; generalised to non-abelian coefficients 
if * = 2). 

Our results are as follows: 
(A) If (i) holds, X is homotopy equivalent to a complex of finite 

type. 
(B) If A is noetherian, (i) is equivalent to: w is finitely presented, 

and all Hi(X) are finitely generated A-modules. 
(C) If X is dominated by a countable complex, it is homotopy 

equivalent to one; this condition is equivalent to (ii). 
(E) If (iii)isr holds, and iV^2, X has the homotopy type of an N-

dimensional complex, countable if (ii) holds. 
(F) X is dominated by a finite complex if and only if (i) and some 

(iii)AT hold. When this is the case, and N^2, there is an obstruction 
Q(X) in the projective class group J?°(A), which depends only on the 
homotopy type of X, and is zero for X finite. If 0(X) = 0, X has the 
homotopy type of a finite complex of dimension max(3, N). For 
iV^2 , any finite complex K of dimension N, and a£j£0(7Ti(i£)), 
there is a complex X, with the (N— l)-type of K, satisfying (i) and 
(iii)iv, and with 6(X) =a. 

The proofs are mostly by induction; we obtain complexes Kr and 
r-connected maps </>: K—>X, where K is finite in (A), countable in 
(C). We then prove that 7rr+i(0) is finitely generated (over A) in (A), 
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and countable in (C), and that we can always use a set of A-gener-
ators (r^2) of 7rr+i(</>) to attach (r + l)-cells to K, and extend <j> over 
them, to obtain an (r + 1)-connected map. If X satisfies (iii)^, and 
r = N— 1, then TN(<I>) is a projective A-module; when it is free, the 
process above gives a homotopy equivalence. 

The crucial step in the proof of (A), which is used again in (F) in 
showing that 6{X) is well defined, is the following lemma of White­
head [5]: 

Let P be a finite connected complex, K a connected subcomplex 
with 7rr(P, 2£)=0 for l^r<n. Then there is a formal deformation 
(and so homotopy equivalence) D:P-*Q rel K such that for r<n, 
Q has no r-cells outside K, and for r ^ w + 2 , Q has the same number 
of r-cells outside Z a s P does. 

We observe that there is an interesting analogy between our ob­
struction in K°(A) (which is the Grothendieck group of finitely 
generated projective modulo free modules) to existence of finite com­
plexes equivalent to X, and Whitehead's obstruction in if1 (A) (re­
duced by ±7r) to their uniqueness up to formal deformation [5]. We 
refer the reader to Bass and Schanuel [ l ] for the relation between 
K°(A) and Kl(A). 

According to Swan [4], K°(A) is finite, if w is, and by Rim [3], 
if 7T is cyclic of prime order, K°(A) is isomorphic to the ideal class 
group of the corresponding cyclotomic field. This gives several exam­
ples both of zero and of nonzero i£°(A). 

The main unsatisfactory feature of the above is our inability to 
construct 2-dimensional complexes under appropriate hypotheses. 
Roughly speaking, by the time we have enough 2-cells to give relations 
between the generators of the fundamental group, we may have too 
many for the homology. 
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