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The present note is a brief summary of the principal results of the 
au thors doctoral dissertation at Harvard University on an inversion 
theory and a corresponding representation theory for convolutions of 
variation diminishing Hankel kernels. These results are parallel to 
and partly include the theory developed by Hirschman and Widder 
in [l ]. Complete details with proofs will appear in a later publication. 

Let 7 be a fixed positive number and let 

n(x) = • 
2y+u*Y(y + 3/2) 

Denote by Lp(0, oo ; dix), l 2g£<oo , the space of all real-valued 
measurable f unctions ƒ defined on (0, oo) for which the norm ||/||p is 
finite where 

r- / • oo - i l / j> 

11/11»-[J. l/ (x ) lp^ (x )J • 
L°°(0, oo ; dix) denotes the space of those functions ƒ for which ||/||oo 
is finite where 

ll/IU - ess. l.u.b. | / ( * ) | . 
0<a;<<» 

Define 

g(x) = 2y-v*T(y + \/2)xW~tJy-M 

and 

*(*) = 2 r-i/«r(7 + l/2)xw-yly-lf2(x), 

where J7_i /2(x) is the ordinary Bessel function and 77_i/2(^), the 
Bessel function of imaginary argument. The Hankel transform f^(x) 
of a function ƒ of Ll is given b y f^(x) = fo $(xt)f(t)dix{t)yQ ^x < oo. Le t 

ƒ»<*> <](%t) 
^—dn(t), O g x< « o , i V - 0 , 1 , 2, • • -, 

o -EJVV) 
where 
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h 
n (t+A). E»(t) = 1 1 ( 1 + - ; ) , N = 0, 1, 2, 

with 0 < a i ^ a 2 ^ • • • and X X i V ö l < <*>• Go(x) is written simply as 
G(x). Let A(x, y, z) be the area of a triangle with sides x, y, z if such 
a triangle exists. Let 

D(x, y, z) = 1~—— i- (xyz)-*y+i[A(x, y, z)}^\ 
Y(y)ir1/2 

if A(x, y, z) exists and zero otherwise. Define the associated function 
f(x, y) of a function/(x) of L1 by 

ƒ
» 00 

f(u)D(x, y, u)dix(u), 0 g x, y < oo. 
o 

It can be shown that the function GN(X, y) associated with GN(%) is 
given by 

(2) GAT(^ y) = I ———— dn(t), 0^x,y< oo . 
J o &2VW 

For any two functions ƒ and g of L1, let 

ƒ
» 00 

ƒ0,30s(:y)^(:y), o g # < oo. 
0 

It follows that the space L1, with multiplication defined by #, forms 
a Banach algebra. For the particular convolution G # <j>{x) the follow
ing result holds: 

CONVERGENCE THEOREM. Let <j> be a function integrable in any finite 
interval, and let 

ƒ» oo /» T 

G(x0, y)<t>{y)dix{y) = lim I G(x0,y)<l>(y)dp(y), x0 è 0, 
converge conditionally. Then 

ƒ• 0 0 

G(*, y)4>(y)dn(y) 
o 

converges conditionally for all x and uniformly for x in any finite 
interval. In this respect G # 4>(x) behaves like the familiar Stieltjes trans
form. 

If H is a real-valued function of L1 and <£, a real-valued, continuous 
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function of L00, then H is said to be a variation diminishing #-kernel 
if and only if, for every such <j>, the number of variations of sign of 
H jf(j> does not exceed the number of variations of sign of <j>. In [2], 
Hirschman generalized an earlier result of I. J. Schoenberg by prov
ing that a #-kernel G is variation diminishing if and only if it has the 
form (1). 

The main inversion theorem under the least restrictive hypotheses 
is the following: 

INVERSION THEOREM. Let <j> be a function integrable on every finite 
interval and let 

ƒ» 00 

G(x, t)<t>(t)dix(t), 0 < x < 00, 
0 

converge conditionally. Then 

lim TlU-—\f(x) = 4>(%) 

where 

Axk(x) = *"(*) + — h'(x) 
x 

if 
j[ /» x+h 

lim — fo(fl - <j>{x)]d^{t) = 0, 
7»-*0 H J x 

a condition which holds almost everywhere. 

The behavior of the variation diminishing kernels G(x, y) and of the 
quotients GJV(X, y)/G(x, y) of kernels plays a central role in the de
velopment of the theory. For example, the matrix [G(xiy 3>/)]i<;;,y<;n is 
totally non-negative, where a real matrix is said to be totally non-
negative if and only if all its minors of any order are non-negative. 
From this it follows that G(x, y)/G(xo, y) is a monotonie decreasing 
function of y for xo>x and monotonie increasing for xo<x. The addi
tional fact that 

G(x, y) ó(aix) 
r>^, ; y —» oo 

G(xo, y) $(aiXo) 

which follows from (2) by an appeal to the calculus of residues, leads 
to the proof of the convergence theorem stated earlier. 
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The corresponding principal representation theorem is the follow
ing: 

REPRESENTATION THEOREM. Necessary and sufficient conditions that 
a function ƒ be given by 

ƒI 00 

G(x, 
o 

ƒ(*) = I G(x, *)#(/), 

with yp(t) f are that 
(i) jfOOGC00, 0 ^ x < o o 
(Ü) ƒ(«*+»(0) = 0 , * = 0, 1,2, 
(iii) f(x)=o(ó(aix)), #—><*>, 
(iv) n £ i ( l « A , / a î ) / W è O , 0 < x < o o , l = tf0<#i< 

The proof of this result depends on a fundamental representation 
theorem which states that a function ƒ satisfying conditions (i)-(iv) 
above is given by 

six)=feu*, y) r ft (i - ̂  w 'kw, 
0 < * < o o , l = tf0 < # ! < • • • , 

where 
* C °° $(#/) 

*(*> = H T T r r **W> o < * < oo, # = l, 2 , . . . . 

n .+4) 
This basic result in conjunction with an application of Helley's theo
rem and an appeal to Tauberian theorems serves to establish the 
main representation theorem. 
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