A PROBLEM IN PARTITIONS RELATED TO THE STIRLING NUMBERS

BY L. CARLITZ

Communicated by P. T. Bateman, October 25, 1963

Let

$$S(n,r) = \frac{1}{r!} \sum_{s=0}^{r} (-1)^{r-s} {r \choose s} s^{n}$$

denote the Stirling number of the second kind and put

$$A_n(x) = \sum_{r=0}^n S(n, r) x^r.$$

In a recent paper [1] the writer has determined the factorization (mod 2) of the polynomial $A_n(x)$.

Put

$$c_{nr}=S(n+1,r+1);$$

then we have

$$c_{n,2r} \equiv \binom{n-r}{r} \pmod{2} \qquad (0 \le 2r < n),$$

$$c_{n,2r+1} \equiv \binom{n-r-1}{r} \pmod{2} \qquad (2r+1 \le n).$$

For fixed n, let $\theta_0(n)$ denote the number of odd $c_{n,2r}$ and $\theta_1(n)$ the number of even $c_{n,2r}$. Then

$$\theta_0(2n+1) = \theta_0(n), \qquad \theta_0(2n) = \theta_0(n) + \theta_0(n-1)$$

and

$$\theta_1(n+1) = \theta_0(n).$$

Moreover we have the generating function

$$\sum_{n=0}^{\infty} \theta_0(n) x^n = \prod_{n=0}^{\infty} (1 + x^{2^n} + x^{2^{n+1}}).$$

It follows that $\theta_0(n)$ can also be defined as the number of partitions

$$n = n_0 + n_1 \cdot 2 + n_2 \cdot 2^2 + \cdots$$
 $(0 \le n_i \le 2)$

subject to the conditions

- (i) if $n_0 = 1$ then $n_1 \leq 1$,
- (ii) if $n_1 = 2$ then $n_2 \leq 1$,
- (iii) if $n_2 = 2$ then $n_3 \leq 1$,

and so on.

The first few values of $\theta_0(n)$ are given in the following table.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\theta_0(n)$	1	1	2	1	3	2	3	1	4	3	5	2	5	3	5	1

In the present paper the following additional properties of $\theta_0(n)$ are obtained.

(1)
$$\theta_0(2^r m) = \theta_0(m) + r\theta_0(m-1) \quad (r \ge 0, m \ge 1),$$

in particular

$$\theta_0(2^r) = r + 1;$$

(3)
$$\theta_0(2^r m - 1) = \theta_0(m - 1) \quad (r \ge 0, m \ge 1),$$

in particular

(4)
$$\theta_0(2^r - 1) = 1.$$

(5)
$$\theta_0(2^{r+s}+2^r)=rs+r+s \qquad (r\geq 0, s\geq 1),$$

(6)
$$\theta_0(2^{r+s}-2^r)=rs+1 \qquad (r\geq 0, s\geq 1),$$

(7)
$$\theta_0(2^{r+s+t} + 2^{r+s} + 2^r) = (r+1)s + rt + (r+1)st - 1$$
$$(r \ge 0, s \ge 1, t \ge 1).$$

Generally if

(8)
$$n = 2^{r_0} + 2^{r_0+r_1} + \cdots + 2^{r_0+r_1+\cdots+r_k},$$

where $r \ge 0$, $r \ge 1$, \cdots , $r_k \ge 1$ and

$$(9) n_j = 2^{r_j} + 2^{r_j+r_{j+1}} + \cdots + 2^{r_j+\cdots+r_k} (0 \le j \le k),$$

so that $n_0 = n$, then we have

(10)
$$\theta_0(n) = (1 + r_0)\theta_0(n_1) - \theta_0(n_2).$$

We may think of (10) as a recursion formula. With the notation (9) we have

(11)
$$\theta_0(n_j) = (1 + r_j)\theta_0(n_{j+1}) - \theta_0(n_{j+2}) \quad (0 \le j < k),$$

where $n_{k+1} = 0$. If we put

$$(12) m_j = 2^{r_0} + 2^{r_0+r_1} + \cdots + 2^{r_0+r_1+\cdots+r_j},$$

then we have the companion formula

(13)
$$\theta_0(m_j) = (1+r_j)\theta_0(m_{j-1}) - \theta_0(m_{j-2}) \qquad (j \ge 1),$$

where $m_{-1}=0$. Indeed (10) and (13) are equivalent. A more general relation is

$$(14) \theta_0(n) = \theta_0(m_i)\theta_0(n_{i+1}) - \theta_0(m_{i-1})\theta_0(n_{i+2}) (0 \le i \le k),$$

where $m_{-1} = n_{k+1} = 0$.

The recurrence (13) suggests a connection with continuants [2, pp. 466-474]. Let

$$K\left(\begin{array}{c}b_1,\,\cdots,\,b_k\\a_0,\,a_1,\,\cdots,\,a_k\end{array}\right)$$

denote a continuant. Then we have

(15)
$$\theta_0(n) = K \left(\frac{-1, \dots, -1}{1 + r_0, 1 + r_1, \dots, 1 + r_k} \right).$$

This may be written briefly in the form

$$\theta_0(n) = K'(1+r_0, 1+r_1, \cdots, 1+r_k).$$

From known properties of continuants we have for example

$$K'(1+r_0, 1+r_1, \cdots, 1+r_k) = K'(1+r_k, 1+r_{k-1}, \cdots, 1+r_k).$$

Also we are led to a determinantal representation of $\theta_0(n)$.

When $r_0 = r_1 = \cdots = r_k = r$ we get the following explicit result:

(16)
$$\theta_0(n) = \frac{\epsilon^{k+2} - \epsilon^{-k-2}}{\epsilon - \epsilon^{-1}} \qquad (r \neq 1),$$

where

$$n = 2^{r}(2^{(k+1)r} - 1)/(2^{r} - 1)$$

and

(17)
$$\epsilon = \frac{1}{2} \left\{ 1 + r + \sqrt{(1+r)^2 - 4} \right\}.$$

For r=1, however, we get $\theta_0(n)=k+2$, which is equivalent to

$$\theta_0(2(2^k-1)) = k+1.$$

Finally we consider some questions of a different kind. The equation

$$\theta_0(n) = 1$$

holds if and only if $n=2^k-1$. The equation

$$\theta_0(n) = 2$$

holds if and only if

$$n = 2^r + 2^{r-1} - 1$$
 $(r = 1, 2, 3, \cdots).$

The equation

$$\theta_0(n) = 3$$

is satisfied if and only if n is of one of the forms

$$2^{r+1} + 2^{r-1} - 1$$
 $(r = 1, 2, 3, \cdots),$
 $3 \cdot 2^r + 2^{r-1} - 1$ $(r = 1, 2, 3, \cdots).$

$$3 \cdot 2^r + 2^{r-1} - 1$$
 $(r = 1, 2, 3, \cdots)$

The equation

$$\theta_0(n) = t \qquad (t \ge 3),$$

where t is assigned, is always solvable. There exist a finite number of even solutions e_1, e_2, \cdots, e_w such that all solutions are given by

(22)
$$e_j, 2e_j + 1, 4e_j + 3, 8e_j + 7, \cdots$$
 $(1 \le j \le w).$

An upper bound for $\theta_0(n)$ is given by

(23)
$$\theta_0(n) \leq (1+r_0)(1+r_1)\cdots(1+r_k);$$

another bound is

$$\theta_0(n) < \left(\frac{\log_2 n}{k+1}\right)^{k+1}.$$

When $r_0 = r_1 = \cdots = r_k = r$, the bound (24) cannot be improved; indeed

(25)
$$\theta_0(n) \sim r^{k+1} \qquad (r \to \infty).$$

A fuller account of these results will appear elsewhere.

REFERENCES

- 1. L. Carlitz, Single variable Bell polynomials, Collect. Math. 14 (1962), 13-25.
- 2. G. Chrystal, Algebra. II, Edinburgh, 1889.

DUKE UNIVERSITY