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Let B(D) denote the class of all bounded holomorphic functions on 
the connected open subset D of the Riemann sphere, and call a bound
ary point ZQ of D removable if every fÇzB(D) has a holomorphic ex
tension to an open set which contains D and z0. Boundary points 
which are not removable are called essential. I t is known [4] that if 
So is an essential boundary point of D> then there exists /£I*(.D), 
with | | / | |D = 1, whose cluster set at z0 is the entire closed unit disc. 
(The symbol ||/ | |s denotes the supremum of the numbers \f(z)\ as z 
ranges over the set S.) Thus, from one standpoint at least, it appears 
that every essential boundary point z0 of D has associated with it 
some f(E.B(D) whose singularity at zQ is as bad as a singularity can be 
at any boundary point. 

Nevertheless, there are situations in which a set of essential bound
ary points has many of the properties that are usually associated with 
interior points. The following construction illustrates this. 

Let E be a nonempty compact subset of the real axis R, subject 
to only one condition: we require that m ( E ) = 0 , where m denotes 
one-dimensional Lebesgue measure. Let Xo, Xi, X2, • • • be positive 
numbers such that Xo < 1, X*—;> <*>, and 

(l) E ^ ) - 1 - «>. 
J b - l 

Let zn = xn+iyn (n= 1, 2, 3, • • • ) be points in the open upper half-
plane, located so that the set of all limit points of {zn} is precisely 
E, and put 

(2) an = inf{Xo, ynXi, (ynX2)
2, 6^X3)3, • • • } • 

Since Xr-»<», we have cen>0, and we can therefore choose rn so that 

(3) 0 < rn < 2-»ynan 

and so that the closed circular discs An with radius rn and center 
at zn+irn are disjoint; (2) and (3) imply that 

(4) 
n-i lx* if k = 1, 2, 3, • • • . 
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Finally, let D be the complement of 

(5) E \J Ax U A2 U A3 U • • • , 

and let Tn be the boundary of An. Note that 00 £ D . 

THEOREM I. If D is constructed as above, then D has the following 
properties : 

(i) Every point of E is an essential boundary point of D. 
(ii) Every fÇzB(D) can be extended to D\JE by the Cauchy formula 

(6) ƒ(*) = ƒ ( « ) + z. — I -^— <*«>, 
n-l 2TTW r W — Z 

and the derivatives f(k) can be extended to DVJE by 

(7) P\z) = E — I 7 " ^ ^ 
„-1 27rWr n (w - s ) * + 1 

^W. 

(iii) The series (6) awd (7) converge absolutely and uniformly in the 
closed lower half-plane G, and the inequalities 

(8) \\/k)\\a ^ k\\t\\f\\D ( * = 1 , 2 , 3 , . - . ) 

ftö/#\ 7w particular, f, f, fn, • • • are uniformly continuous on G. 
(iv) IffÇzB(D) and if ||/|U = ||/IU» then f is constant. 
(v) If f(x) = 0 for infinitely many xÇzE, then f(z) = 0 for all ZÇLD. 

The proofs are quite straightforward. Since every neighborhood of 
every point of E contains some An, we have (i). Since every ƒ £ 5(D) 
has nontangential boundary values almost everywhere on each Tn, 
and since m(E)=0, it is easy to see that (6) and (7) hold for all 
2 £ D . If zÇiG, the absolute value of the nth summand in (6) is no 
larger than y~VW||/||D, the absolute value of the nth summand in 
(7) does not exceed 

(9) k\y^rn\\f\\D, 

and hence (ii) and (iii) follow from (4). 
In particular, we have 

(10) ll/IU ^ Xoll/IU 

if / ( °° ) = 0. If l l /IU= l> if ƒ is n o t constant, and if ƒ(<»)=«, we can 
apply (10) to the function 

f-a 
(ID t - 7 — 

1 — aj 
and conclude that 



1964] ESSENTIAL BOUNDARY POINTS 323 

11 11 Xo + « 
(12) M U * , • 1 ' < 1 -

1 + I a I Xo 
This gives (iv). 

The inequalities (8), combined with our assumption (1), imply that 
the restriction of every fÇiB(D) to the real axis R lies in a quasi-
analytic class [3]. If XQÇZE is a limit point of real zeros of/, then 
f(k)(xo)=0 for & = 0, 1, 2, • • • (by repeated application of Rolle's 
theorem to the real and imaginary parts of ƒ on R). The quasi-
analyticity of ƒ therefore shows that ƒ vanishes on R, and hence on 
D, which proves (v). 

Thus E acts like a set of interior points as far as the Cauchy for
mula, the uniqueness theorem, and the maximum modulus theorem are 
concerned. 

Let us now consider the algebra A (D), consisting of all uniformly 
continuous holomorphic functions on D, which is a Banach algebra 
relative to the norm | | / | | D , whose maximal ideal space is the closure 
D of D in the Riemann sphere [ l ] , and whose Silov boundary is 

(13) ôD = J E U r 1 u r 2 u r 3 u . . . . 

If £ is countable, for instance, and if D is as in Theorem I, (v) shows 
that we obtain an example of a sup-norm algebra in which each func
tion is determined by its values on a very small subset of the Silov 
boundary. 

Finally, consider the so-called /3-topology on the algebra B(D). 
This was introduced by Buck [2] and is also called the "strict" topol
ogy; a typical /3-neighborhood of a function ƒ£J3(D) is determined 
by a continuous real function <t> on D, positive on D and 0 on dD, 
and it consists of all gÇiB(D) for which 

(14) | | (g-/)tf>|U<l. 

If D is the unit disc, Buck has proved (unpublished) that the only 
i8-continuous complex homomorphisms of B(D) are the evaluations 
at points of D. Rubel and Shields (in a paper which is in preparation) 
have recently extended this to any D whose boundary has no com
ponent consisting of a single point. This result cannot be extended 
to every D, however, even if every boundary point of D is essential: 

THEOREM II . If D is as in Theorem I, if x £ E , and if <£(ƒ) =/(x) , 
then $ is a ^-continuous homomorphism of B(D). 

I t is clear that $ is a homomorphism, and the Cauchy formula (6), 
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with z=x (and with the curves Tn replaced by nearby curves in D), 
shows that $(ƒ) is obtained by integrating ƒ with respect to a finite 
measure in D. This shows that $ is /^-continuous [2, p. 99]. 
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