connecting the fixed points of T. (4) If O_1 and O_2 are disjoint simply connected domains invariant under a loxodromic T, the corresponding arcs, as in (3), divide S into two Jordan regions, one or the other of which must contain any domain disjoint from O_1 and O_2 . (5) If O is a simply connected domain invariant under an elliptic T, then O must contain a fixed point of T.

The examples are elaborations of the ideas in L. R. Ford, Automorphic functions, 2nd ed., Chelsea, 1951, pp. 55-59.

Brown University

DIFFERENTIABLE NORMS IN BANACH SPACES¹

BY GUILLERMO RESTREPO

Communicated by W. Rudin, January 20, 1964

1. Introduction. In [4, p. 28] S. Lang has asked whether or not a separable Banach space has an admissible norm of class C^1 . In this note we indicate a proof of the following theorem, which characterizes those Banach spaces for which such a norm exists.

THEOREM 1. A separable Banach space has an admissible norm of class C^1 if and only if its dual is separable.

It follows from this theorem that not even C(I) possesses an admissible differentiable norm.

2. Preliminaries. Let X be a Banach space with norm α ; we write $S_{\alpha} = \{x \mid \alpha(x) = 1\}$ and $B_{\alpha} = \{x \mid \alpha(x) \leq 1\}$. A norm in X is admissible if it induces the same topology as does α . The dual space is written X^* and the norm dual to α is denoted by α^* . An $f \in X^*$ is called a support functional to B_{α} at $x \in S_{\alpha}$ if $\alpha^*(f) = f \cdot x$; if f has norm 1, it is called a normalized support functional and is written ν_x . A norm is smooth if there is a unique normalized support functional to B_{α} at each $x \in S_{\alpha}$. The norm α is differentiable at $x \neq 0$ if there is an $\alpha'(x) \in X^*$ such that

$$\lim_{y \to x; y \neq x} \frac{\left| \alpha(y) - \alpha(x) - \alpha'(x) \cdot (y - x) \right|}{\alpha(y - x)} = 0$$

¹ Research partially supported by NSF Grant G-24471.

and a norm differentiable at each $x \in X - \{0\}$ is of class C^1 if the map $\alpha': X - \{0\} \to X^*$, defined by $x \to \alpha'(x)$, is continuous. The following two results are well known:

- 1. Klee [3]. Let X and X^* be separable. Then there exists an admissible norm α in X such that α^* is strictly convex, and such that whenever a sequence $\{f_n\}$ in X^* converges to $f \in X^*$ in the w^* -topology, then $\alpha^*(f_n) \rightarrow \alpha^*(f)$ implies $\alpha^*(f f_n) \rightarrow 0$.
- 2. Bishop-Phelps [1]. In any Banach space X, the set of all the support functionals to B_{α} is dense in X^* .
- 3. Proof of Theorem 1. It is not difficult to see that if the norm α is differentiable at $x \in S_{\alpha}$, then $\alpha'(x) = \nu_x$ is a normalized support functional to B_{α} at x, and is unique. The map $x \rightarrow \nu_x$ of S_{α} into S_{α^*} is denoted by μ . We first establish the following general theorem:

THEOREM 2. (a) If α is a smooth norm in X, then the map μ is continuous when the norm topology is used in X and the w^* -topology is used in X^* .

- (b) The norm α is of class C^1 if and only if the map μ is continuous in the norm topologies.
- (c) A norm is of class C^1 if and only if it is differentiable at every point of S_{α} .

Complete details will be published elsewhere; using this result, we prove Theorem 1 as follows:

Assume X^* is separable, and let α be the norm of Klee's theorem. By a well-known duality, α is smooth. Theorem 2(a) assures μ is continuous with the w^* -topology in X^* , and then Klee's theorem shows μ is continuous in the norm topology. By Theorem 2(b), α is therefore of class C^1 .

Assume now that α is of class C^1 . Extend the continuous map μ to a continuous $\hat{\mu}: X - \{0\} \rightarrow X^*$ by setting $\hat{\mu}(x) = \alpha(x) \cdot \mu(x/\alpha(x))$. The image of $\hat{\mu}$ evidently contains the set of all the support functionals to B_{α} , and an application of the Bishop-Phelps theorem shows at once that X^* is separable whenever X is separable.

BIBLIOGRAPHY

- 1. E. Bishop and R. R. Phelps, The support functionals of a convex set, Proc. Sympos. Pure Math., Vol. 7, pp. 27-35, Amer. Math. Soc., Providence, R. I., 1963.
- 2. J. Dieudonné, Foundations of modern analysis, Academic Press, New York, 1960.
 - 3. V. Klee, Mappings into normed linear spaces, Fund. Math. 49 (1960), 25-63.
 - 4. S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962.

University of Southern California