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1. Introduction. Let G be a locally compact Abelian group. Let 
LP(G) (1 ̂ £ < <*>) be the space of £-integrable functions (with respect 
to the Haar measure) with the usual norm. A multiplier of LV(G) is a 
bounded linear operator T of LP(G) into LP(G) which commutes with 
the translation operators; that is, TyT—Try for all yGG, where 
Tyf(x)==f(x+y). The space of multipliers will be denoted by Mp 

= MP(G). I t is known that Mi is isomorphic and isometric to the space 
of bounded regular Baire measures on G and that M2 is isomorphic 
and isometric to L°°(r), where T is the character group of G} and thus 
ikf2 is the conjugate space of the space A(G) of continuous functions 
on G which are Fourier transforms of elements of Ll(T). Theorem 1 
below asserts that, for Kp < °o, Mp is also the conjugate space of a 
space Ap of continuous functions on G. A corollary of this fact is that 
MP is the closure in the weak operator topology of the linear span of 
the translation operators. A theorem due to Hörmander relating 
tempered distributions on Rn to Mp(R

n) [2], is also an easy conse­
quence of Theorem 1. In view of the fact that a multiplier T can be 
identified with an element T^ÇzL^ÇT) (T being the character group 
of G), another consequence of Theorem 1 is that if TÇLMP) T^ */* 
= U^ with VÇzMp, where ju, is a bounded regular Baire measure on 
T. If G is a noncommutative unimodular group, a proposition analo­
gous to Theorem 1 holds for operators commuting with right (respec-
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tively, left) translations; the specialization to the case p = 2 yields 
results established by Segal in [7]. Theorem 7 relates lacunary sub­
sets of a discrete Abelian group T to multipliers on LP(G) where G is 
the character group of I\ 

2. The space of multipliers as a conjugate space. Hereafter p will be 
a fixed real number, 1 <p< <*>, and q will be such that l/p + l/q = 1. 
Coo(G) and Co(G) will be, respectively, the space of continuous func­
tions with compact support and the space of continuous functions 
vanishing at infinity on G. The convolution with respect to the Haar 
measure of two measurable functions ƒ and g will be denoted by 
ƒ * g whenever it is well defined. 

DEFINITION 1. Let Ap be the space of f unctions Â£Co(G) which can 
be written as /&= X)f-i e»/* * gi} where fiGLp(G), giGLq(G) and 
2-)lc<l IWWI^II^0 0 ; /^ hEAp define 

/ 00 00 \ 

ll*lk * inf \ £ I Ci\ ll/JUI&ll«: * = Z¥*•*£*!• 
THEOREM 1. Mp is isometric and isomorphic to the conjugate space 

of Ap, the element T(~MP corresponding to the functional faih) 
==X)c*(^y* * £i)(Q)i where h= X A / * ' * git The weak operator topology of 
Mp coincides, on the unit sphere of Mp, with the weak-star topology in­
duced by Ap. 

One notices that if/, gGCoo(G), T(f * g) = Tf * g, so that T(J * g) 
is, after correction on a set of Haar measure zero, a continuous func­
tion. One can then define the functional <j>T(h) = Th(0), on the space 
S of linear combinations of functions of the type ƒ * g with/ , gGCoo(G). 
Thus the proof of Theorem 1 consists essentially of showing that the 
completion of S, under the norm 

| | A | | « s u p { | r * ( 0 ) | : TeMP9\\T\\M9£l}9 

is A p. This is accomplished using the fact that the BX topology on 
the conjugate space X* of a Banach space X has the same continuous 
linear functionals as the X topology (weak star topology) (cf. [l, 
V, 5.6]). 

COROLLARY 2. Mv is the closure, in the weak operator topology, of the 
span of the translation operators. 

REMARK 3. A s a consequence of the Riesz convexity theorem [l, V, 
10.11], and in view of the duality between LP(G) and Lq(G), the restric­
tion to Coo(G) of an element T(EMP can be extended to an element of 
Mr for p^rSq. Furthermore \\T\\Mp = \\T\\Mq and, if p^r^s^l, 
||r||jfr=a||2r,||iif,. Dually one has Ap = Aq and, if p^r^s^2, AaQAr, 
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"with || - | | , i r ^ | | -|U,. One should also notice that A2(G)=A(G) is the 
space of Fourier transforms of elements of L1^), where T is the char­
acter group of G. Thus, since A2 is dense in Ap, each TQMP cor-
responds biuniquely to an element T^(y) of L°°(r). T^ will be called 
the transform of T. 

REMARK 4. A simple consequence of Theorem 1 and of the fact 
that A2 = A(G) is continuously and densely embedded in AP1 is the 
result proved by Hörmander in [2], stating that for G = Rn, Mp can 
be identified with a subspace of the space of tempered distributions 
on Rn. I t suffices to notice that the space S of rapidly decreasing func­
tions on Rn is continuously and densely embedded in A(Rn) and 
therefore in Ap (cf., e.g., [3, I, 1.7]). 

COROLLARY 5. Let TÇzMp and let T^ be its transform in the sense 
of Remark 3; then, if fx is a bounded regular Baire measure on Y {the 
character group of G), T^ * jit is also the transform of a multiplier in Mp. 

One shows that if p, is the Fourier-Stieltjes transform of /x, fihCE.Ap 

for every hÇzAp\ thus the functional <j>{h) = T(p,h)(0) on AP defines a 
multiplier whose transform is JT~" * ju. 

REMARK 6. Theorem 1 and Corollary 2 are valid for not necessarily 
commutative unimodular groups in the following sense: Let £p 

(respectively, (Rp) be the space of bounded linear operators on LP(G) 
which commute with right (respectively, left) translations by ele­
ments of G. Let A\ (respectively, A2

P) be the space functions on G 
which can be written as ]C£»i cif* * £*> wlt^ fi&Lp(G), gi^Lq(G) 
(respectively,/^Gi5(G), g%&Lp(G)) with fiy git Ci satisfying the condi­
tions of Definition 1 and with norms analogously defined; then £>p 

(respectively, (Rp) is the conjugate space of A\ (respectively, Al). 
Moreover, £p (respectively, (Rp) is the closure, in the weak operator 
topology, of the space of the left (respectively, right) translations. 
Thus the space (R/ of the operators commuting with elements of Gip 

is £p and conversely, so that (Rpr\£p is the center of both £p and (Rp. 
For the case p — 2 these results specialize to known results due to 
Segal [7]. One should also notice that A\ — A\ and therefore £p is 
isometric and linearly isomorphic to (Ra. 

3. Multipliers and lacunary sets. Let G be a compact Abelian 
group, T its discrete character group. A set EQT is called a Sidon set 
(cf. [S, 5.7.2]) if every f£C(G) with / ( 7 ) = 0 for yGE satisfies 
S I Kl) I < °°, or equivalently if for every bounded function X(7) on 
£ , there exists a Baire measure M on G such that #(7) = X(7) for 7 £ E 
(J and j& denote, respectively, the Fourier transform and the Fourier-
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Stieltjes transform of ƒ and fi). As measures (operating by convolu­
tion) are exactly the operators on LX(G) which commute with trans­
lations, it is natural to define an analogous concept for multipliers of 
LP(G), recalling that each TÇzMp corresponds biuniquely to an ele­
ment T* of L°°(r) (cf. Remark 3). 

DEFINITION 2. A set EQT is called a p-Sidon set if every fÇzAv such 
that ƒ(7) = 0 for y &E satisfies ] £ | ƒ(7) | < 00. 

THEOREM 7. Let p9^2, then the following properties are equivalent 
for a subset EofT: 

(i) E is a p-Sidon set; 
(ii) if XGL°°(r), there exists T£.MP such that 7^ (7 ) = X ( Y ) for 

7 G £ ; 
(iii) if XÇL^QT), there exists TÇzMp satisfying (ii) and moreover 

such that 2 ^ ( 7 ) = 0 for y <$£ ; 
(iv) if f&L^G) and f(y)=0 for y&E, then f<E.Lr(G) where 

r = ma.x(p, q). 

I t should be noted that condition (iv) above is the denning prop­
erty for what is called a lacunar y set of order r or a A(r ) set. Properties 
of these sets are investigated in [ô] and [4, Chapter VI I I ] . In par­
ticular, it is known that a Sidon set is a lacunary set of order r for 
every r and hence a £-Sidon set for every p. One should also notice 
that condition (iii) above implies that the characteristic function of 
a £-Sidon set is always the transform of a multiplier. The analogous 
statement for Sidon sets does not hold; indeed it is known that a 
Sidon set whose characteristic function is the Fourier-Stieltjes trans­
form of a measure is necessarily finite. 
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