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1. Introduction. The object of this note is a discussion of the special 
unitary (or SU-) bordism theory. Specifically we shall show that the 
SU-bordism groups of a point, which are the coefficient groups for 
this generalized homology theory, have no odd torsion and contain 
no elements of order four. The absence of odd torsion was first estab­
lished by Novikov [4], who also showed that these groups in odd 
dimensions have no elements of order four. 

Our approach is parallel to Atiyah's use of bordism to study the 
relation of oriented to unoriented cobordism [l]. We shall need the 
Milnor spectra MU and M SU [3]. We take MU(n), respectively 
MSU(n)y to be the Thorn space of the universal bundle T)n—>BU(n)t 
respectively %n-*BSU(n). The natural maps S2AMU(n)->Af U{n +1), 
and S2AMSU(n)->MSU(n + l) give rise to the spectra. 

The SU-bordism groups of a finite simplicial pair are defined by 

T*(X, A) - rk+2n(MSU(n) A X/A)y n large. 

This is the homology theory associated to the spectrum M SU by G. W. 
Whitehead [ó]. Similarly OUCXT, A) = irk+2n(MU(n) AX/A), n large. 
We shall recall that X/0 = X\J<^, the disjoint union of X with a 
point. 

2. The basic isomorphisms. We establish in this section two iso­
morphisms relating SU-bordism to U-bordism. We let a—»JBi7(l) 
be a £/(w)-bundle over the classifying space of Z7(l), and we let 
(M(a), co) be the associated Thorn space with base point at infinity. 

(2.1) If the first Chern class of a is a generator of H2(B U(l) ; Z) then 
there is a canonical isomorphism Tk+2m(M(a)AX/A)~ciik(Xf A) for 
every finite CW-pair. 

Briefly there is a bundle map 

F 

I I 
BSU(n) X BU(1) L BU(n + m) 
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for which f*iH*(.BU(n+m); Z)c^Hi(BSU(n)X(BU(l); Z)), O^i 
g=2w+l. In view of the commutative Thom diagram [5], F*: 
H^Mirin+n), oo ; Z)saH'(Jir({,X«), » ; Z), 0 ; S * £ 4 » + 2 * » + l . For 
each finite CW-pair it follows that 

(F X id)* ' 7rk+2(m+n)(M(i;n X « ) A X/A) CX 7Tjb-t.2(m+n)(M (tyn+m) A X/A) 

for &^2ra. However Af(^nXa) = M5C/(w)A^(«) , and J f^+m) 
~MU(n+tn); thus 

I W A f ( a ) A X/ i l ) ex <U*(X, i l ) . 

We shall next indicate an immediate corollary. We consider 
CP(N)QCP(co) = BU(1) together with the stunted projective space 
CP(oo)/CP(iV). 

(2.2) For every finite CW-pair 

Tk+w+2((CP(*)/CP(2N)) A (X/A)) ~ <ll*(X, 4 ) . 

The formula is also valid for N = 0. We let 771—>B U(l) be the canoni­
cal line bundle and rji—>BU(1) be the conjugate bundle. We take 
a=(N+l)rii®Nrji. The total Chern class of ce is (l+c)(l-c2)N, 
hence (2.1) applies to ce. We must show that the Thom space of a is 
CP( 00 )/CP(2N). For this, however, we may as well consider the 
Thom space of (2JV+1)771, which is real equivalent to ce. Now 
CP(n — 2N—\)CCP{n) with normal bundle the restriction of 
(2N+1)771. The Thom space of this normal bundle is CP(n)/CP(2N)f 

so we let n—»<*> and CP(<*>)/CP(2N) is indeed the Thom space of 
(N+l)rii®Nrji. Note explicitly that Vk+m+2(CP(<x>)/CP(2N))~%k. 

We turn next to an SU(m)-bundle jS—>BU(1) with Thom space 
Af(j8). An analogous result to (2.1) is 

(2.3) If the second Chern class of j8 is a generator of H4(BU(1); Z) 
then 

Tk+2m(M(p) A X/A) ~ r* (CP(«>) X X, CP(*) X 4 ) 

/or every finite CW-pair. 
We consider first the bundle map 

F 
£n X P • £n+m 

i t 
BSU(n) X J3tf(l) -^ JB5C/(W + m) 

and we let <rn+m—>BSU(n+m)XBU(l) be the bundle induced from 
£n+m by projection on the first coordinate. We obtain a new bundle 
map 
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G 
£n X fi > <rn+m 

i i 
BSU{n) X BU(l) - i BSU(n + m) X BU(1) 

where g(x, y) — (f(x, y), y). We argue that 
(G X id)* • 7TA+2 (m+n) (Jf (6. X 0) A XIA) 

— ftk+2 (m+n) (M(«n+m) A XIA) 
for k+2m^2n. Now M(CnXP) = MSU(n)AM(0), and If(<r„+m) 
= MSU(n+m)A(CP(oo)/0), hence 

l W J f f ê ) A X/,4) ~ r*((CP(*)/0) A (*A0) . 

Finally r t ( (CP(») /0 )A(X/ i4 ) )=r t (CP(oo)xX, C P ( ^ ) X ^ ) . An 
immediate corollary is 

(2.4) Por ewry ymîfe CW-pair 

r»+4((cp(oo)/cp(i)) A (x/x)) ^ r4(cp(oo) x x, CP(«o) x A). 
We take (8 = r;i ©iji—>CP( oo) and apply (2.3). To use (2.4) we need 

one more relation 
(2.5) For every finite CW-pair 

Tk(CP(<») X X, CP(oo) XA)OL Tk(X, A) © <U*_2(X, A). 

There is a split exact sequence of spaces 

0-+X/A-^CP(°o) X X/CP(») X 4 -»CP(«) A I / i - > 0 

from which (2.5) follows since Tk(CP(^)AXIA)c^ü.k^(X, A). 

3. The exact sequences. We shall combine the isomorphisms into 
several exact sequences. First consider 

0-*CP(l) A XIA -*CP( oo) A X / J -> (CP(oo )/CP(l)) A (X/A)->0 

together with the reduced SU-bordism sequence 

• f*+2(CP(l) A XIA) -» Tk+2(CP(™) A XIA) 

-* r»+1(cp(oo)/cp(i) A x/4) - > • • • . 
Since CP(1) = S2, f*+2(CP(l) A I / 4 ) ^ ( I , A). We use (2.2), (2.4) 
and (2.5) to obtain 

(3.1) For every finite CW-pair there is an exact sequence 

• rk(x, A) -» ai*(x, A) -> r*_2(x, 4) © «u*-4(x, 4) 
-> r,_i(X, , ! ) - > . . . . 

This is the analogue of the exact sequence [l ] 
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> Qk(X, A) -> 9fl*(X, 4 ) -> &_i(Z, il) 0 9l*_2(X, il) 

-> &_i(X, il) _> . . . . 

Now from (2.2) it follows that fA;+2(CP(oo))~cuA;. Let us set Tk 

= rfc(pt.), so the Tk are the coefficient groups. We know, therefore 
[5], that 

fW2(CP(*>)) ® Q = Ê^*+w(CP(«>) ® ry ® 0 = ai* ® Q; 
0 

hence r2y+i is finite and rank r2y = rank ^ y — rank cU,2y-2. We are espe­
cially concerned with computing the groups ffc(CP(2)). We see im­
mediately that f 2/+i(CP(2)) is finite. 

The exact sequence 0->CP(2)->CP(oo)->CP(oo)/CP(2)-*0 with 
the aid of (2.2) yields 

> r*(CP(2)) -» 0U_2 -> 0l,_4 -> f *-i(CP(2)) - > . . . . 

Since ^ y is free and ^y+i = 0 we have 

0 -> r2(y+i) -> Ol2y -> cU2y-2 -> r2y+1(CP(2)) -> 0; 

hence f2y(CP(2)) is free. 
Next we wish to apply (3.1) to (CP(2), pt.). From [2, (2.2)] we 

have ca2y(CP(2)) is free and cÛ2y+i(CP(2)) = 0 . Applying (3.1) we have 

0 -* r2y+i(CP(2)) -> r2y+2(CP(2)) - > . . . ; 

hence T2y+1(CP(2)) =0 . It follows that r2(y+1)(CP(2)) is a direct sum-
mand of ^y- Actually it is the subgroup of weakly complex cobordism 
classes for which every Chern number involving c[ vanishes. To com­
plete our argument we turn to 0->CP(l)-*CP(2)-»CP(2)/CP(l)->0. 
Now r* + 2 (CP( l ) )~ r* and since CP(2)/CP(1) is S\ 

r*+2(CP(2)/cp(i)) ~ r,_2. 

We have thus 

-+ i w f * + 2 (CP(2) ) -» r*_2 -* i v x -> f,+i(CP(2)) - > . . . . 

Since r2y+i(CP(2)) =0, this becomes 

e e 
o - » r2y_! -> r2y -> r2(y+i)(CP(2)) -> r2(y-i) - » r2y_i -> o. 

(3.2) The image ofd: Tk—*Tk+i consists entirely of elements of order 2. 
We postpone the discussion of this point until the final section. 

Since r2(y+i) is free we have 
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(3.3) The groups Tk contain no odd torsion, nor do they contain ele­
ments of order four. 

We have been informed that A. Liulevicius has computed a con­
siderable number of the groups T*; the first few are TiC^Z2, r2c^Z2, 

r3=o, T^Z. 
4. Homomorphisms in a homology. We wish to assign to each ele­

ment in 7}p = irp+q(S
q), p^-q — 1, a stable, natural additive homology 

operation 6:Tn(X, A) —>Tn+p(X, A). We select a map ƒ: (Sp+q, x0) 
—>(Sq, yo) and consider 

(ƒ X id)*: fW*(S*+« A XIA) -> Î V W ^ A X/A). 

We define 0: Tn(X, A)—>Tn+p(X, A) so that the diagram 

(ƒ X id)*: Tn+P+a(S*+« A X/A) -+ Tn+P+<l(S« A X/A) 

Î Cü T ~ 
0: Tn(X, A) > rw+3,(X, il) 

commutes. The definition only depends on the stable homotopy class 
of ƒ. Furthermore if g: Sp+q-*Sq is another map with operation 0', 
then 0 + 0 ' corresponds to / + g £ 2 „ . For example, if / £ 2 i ~ Z 2 , then 
every element in the image of 0 has order two. 

We may attach a (p+q +1)-cell to Sq via ƒ to obtain a space F. 
Now there is an exact sequence of spaces 

0 -»S« A Jf/il -* F A X/ i l ->#>+<*+! / \ x / i l -* 0 

which gives rise to an exact sequence 

Y A x/A) -> ivP(x, 4) 

-+ rn(x, 4) -> . . •. 
This indicates the role of 0 in (3.2), for there we took / : S3—>S* to be 
the Hopf map, so Y— CP(2) and / £ 2 i ~ Z 2 and every element in the 
image of 0 has order two. Of course the construction of the operators 
may be carried out in any generalized homology theory. 

Added in proof. In their paper SU-cobordism and the Atf invariant, 
Lashof and Rothenberg also showed that T2k has no elements of 
order four. 

REFERENCES 

1. M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 
200-208. 

2. P. E. Conner and E. E. Floyd, Periodic maps which preserve a complex struc­
ture, Bull. Amer. Math. Soc. 70 (1964), 574-579. 



i964] A NOTE ON APPROXIMATION BY BERNSTEIN POLYNOMIALS 675 

3. J . W. Milnor, On the cobordism ring ti*, and a complex analogue. I, Amer. J. 
Math. 82 (1960), 505-521. 

4. S. P. Novikov, Homotopy properties of Thorn complexes, Mat . Sb. (N.S.) 57 (99) 
(1962), 407-442. (Russian) 

5. R. Thorn, Quelques propriétés globales des variétés differentiable. Comment. 
Math. Helv. 28 (1954), 17-86. 

6. G. W. Whitehead, Generalized homology theories, Trans. Amer. Math . Soc. 102 
(1962), 227-283. 

INSTITUTE FOR ADVANCED STUDY AND 

UNIVERSITY OF VIRGINIA 

A NOTE ON APPROXIMATION BY BERNSTEIN 
POLYNOMIALS 

BY B. BAJ§ANSKI AND R. BOJANIÓ 

Communicated by A. Zygmund, May 11, 1964 

Let ƒ be continuous on [0, l ] and 0 g a < / 3 g l and let Bnf be the 
Bernstein polynomial of ƒ of degree n, denned by 

Bnf(x) = £ f^)^)^1 ~ *)W~"' 

In view of a result of E. V. Voronovskaya, which states that the 
boundedness of ƒ on [0, l ] and the existence of ƒ" at a point xG [0, l ] 
implies that 

x(l - x) / 1 \ 
Bnf(x) - f(x) = -±- -ƒ"(*) + ol-) (n-+«>), 

it has been conjectured [l, p. 22] that the relation 

£»ƒ(*)-ƒ(*) = <>(-) 

cannot be true for all xG [a, j8] unless ƒ is a linear function on [a, j8]. 
The following theorem related to this conjecture was proved by K. de 
Leeuw [2]: 

If ƒ is continuous on [0, 1 ] and 

Bnf(x)-f(X)=0(^j 


