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Let X be a real or complex Banach-space; if fÇzX, \\f\\ denotes the 
norm of/. If E(X) denotes the Banach-algebra of endomorphisms of 
X, { T(t)} is called a one-parameter semi-group in E(X) of class (C0), 
if (i) T(t)<EE(X) for *G[0, co), T(0)=I (identity); (ii) T(t+u) 
= T(t)T(u) for /, uG[0, « ) ; (iii) l im,j 0 | | r ( 0 / - / | | = 0 for a l l / G X 

Under these hypotheses the infinitesimal operator of {T(t) } is a 
closed linear operator A defined by 

limine/-/]-4/ll = o 
with domain of definition D(A) dense in X. D(A) becomes a Banach-
space, if the norm is defined by | | / | |+| |^4/ | | (see E. Hille and R. S. 
Phillips [3, Chapter X]) . 

One of the authors [ l ] has studied the problems of best approxi
mation in semi-group theory. Thus: 

Let { T(t)} be a semi-group of class (C0) defined on X. 
(i) If | | r ( 0 / - / | | =0(0 ( U 0), then Af=Q and T(t)f=f. 
(ii) For eachfE.D(A) we have \\ T(t)f-f\\ =O(0 (* |0 ) . 
(iii) If X is reflexive and \\ r ( 0 / - / | | = 0(0 (t [ 0), then f<ED(A). 
The statements (i) and (ii) go back to E. Hille [3, Chapter X ] . For 

a generalization of this theorem see the cited paper as well as K. de 
Leeuw [4] and P. L. Butzer and H. G. Tillmann [2]. 

I t is the object of this note to characterize the set of elements ƒ, 
for which the order of approximation of ƒ by T(t)f is not the best pos
sible, i.e., we will not treat saturation problems. In this case, the 
following general theorem holds. 

THEOREM 1. Let {T(t)} be a semi-group of class (C0), let T(t)[X] 
CD (A) for each t>0 and | | ^ r ( 0 | | ûMdr\ then 

IIW-/ll = o[<KV0] it t o) 
implies 

<t>(u)du (0<tg 1), 
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where 4>(u) is a positive nonincreasing function in [l, oo) and Mi 
(i = 0, 1, 2, 3) are constants.1 

We may remark that M. Zamansky [7] has established a theorem 
of this type for trigonometric polynomials. 

COROLLARY. Under the conditions of Theorem 1 we have 
(i) | |W-jf| |=0(*«) (0«*<1; U0) if and only if \\AT(t)f\\ 

= 0 ( ^ ) ^ 0 ) ; 
(ii) if || T(t)f-f\\ = 0(0 (U 0), then \\A T{t)f\\ = O(log l/t) (t j 0). 

The corollary is an immediate consequence of the theorem. 

Sketch of proof of Theorem 1. Setting 4=1/2* (£ = 0, 1, 2, • • • ), 
we denote by Uk the operator T(tk) — T(tk-i). Then by the semi-group 
property A Ukf=AT(tk) [ƒ- T^Jf] -A T(tk-.i) [f- T(tk)f], and mak
ing use of the assumptions one has 

\\AUkf\\ g \\AT{tk)\\\\f- r(4-!)/|| + | U r ( 4 - i ) | | | | / - T{h)f\\ 

£ M2*-V(2*-1) (k = 1, 2, • • • ). 

Now, let t be given in (0, l ] , we choose an integer n such that 
tn<tûtn-i- Then 

\\AT(tn)f - AT(Qf\\ è £ \\AUhf\\ Û2M ( 4>(u)du. 
&=»n0-fl * 2 n 0 - l 

Similarly, we get 

\\AT(t)f - AT(tn)f\\ = M r ^ ( l / 0 , 

and, furthermore, 

\\AT(t)f\\ £ \\AT(tn,)f\\ + \\AT(tn)f- AT(tn,)f\\ 

+ \\AT(t)f-AT(tn)f\\, 

which proves the theorem for #0=1. 
As an application we will discuss the singular integral of Abel-

Poisson. Let ƒ be a continuous, 27r-periodic function (ƒ £ CW), with 
||/|| =max ï \f(x) |. Abel's method of summation of the Fourier series 
of ƒ defines the singular integral 

00 

[V(t)f](x) = V(f; er*\ x) = a0/2 + 2 (ak cos kx + fa sin kx)e~kt 

k°=>i 

1 f* 
= — I f(u)P(er'; oo - u)du (0 < / < oo), 

7T « /_ i r 
lif r w [ ^ 

onXfor*>0; | 
C-^(^) for each *>0, then AT(t) exists as a bounded linear operator 
A T(t)\\ denotes the operator norm. 
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with 

P(r; u) = (r = <r*\ 0 ^ r < 1). 
2 1 - 2r cos « + r2 

F(/) is a semi-group of class (Co) with || F(*)|| = 1. -^C^) is the set of 
functions ƒ, for which the derivative of the conjugate function, thus 
/ ' ^ S i T - i k(ak cos kx+bk sin fex) is an element of C2ir. Furthermore, 
V(f) [Cu] CD(A) for a lW>0 and 

\\AV(t)\\ = - f ' I e'(<r'; «) | du è 4T1 (0 < J < co), 

whereby 

r sin w 

1 — 2r cos u + r* 

Now, with the aid of the corollary we have 

THEOREM 2. Let jf£C2,r, and to V(/; r; x) &e Jfte Abel-Poisson inte
gral. The following statements are equivalent if 0 < a < l : 

(i) \\f{x+h)-f(x)\\^0(\h\') (h^O); 
(ii) \\f(x+h)-2f{x)+f(x-h)\\=0(\h\*) (fc->0); 

(iii) \\?'(f\r;x)\\~0(l-r)*-*(rn)\ 
(iv) || l̂ ^Cf; r; «)|| - 0(1 -r)—» (r Î 1) ; 
(v) | | 7 ( f ; r ; * ) - / ( * ) | h 0 ( l - r ) « ( r f l ) . 

The equivalence of the statements (i)-(iv) above is known, the 
results being mainly due to G. H. Hardy and J. E. Littlewood (see 
A. Zygmund [8, Chapter VII]) . These proofs, in contrast to ours, 
used complex methods. The fact that (v) is equivalent to (i) is a new 
contribution. 

In some of his papers, J. L. Lions [5 ] has studied trace theorems and 
theorems of interpolation in semi-group theory. He introduced the 
so-called intermediate spaces X[p, a, A]: Let {r( / )} be a semi
group of class (Co) with || 3T(0|| â Afo for all fèO. We denote by 
X[p, a, A] the set of elements ƒ £ X for which the integral 

r t(«-»v\\T(t)f - f\\Ht 
J ft 

exists, where -\/p<a<\.-\/p, lûpû™. X[p, a, A] becomes a 
Banach-space under the norm 
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a oo \ 1/p 

j<-»H|r«)/-/IMj . 
(If p = oo, the modification is evident.) I t is easy to see that 

D(A) C X\fi, a, A] C X. 

With methods stated above we can prove the following theorem 
concerning X[p, a, A\. 

THEOREM 3. Let {T(t)} be a semi-group of class (Co), let | | r ( 0 | | 
SMo, T(f)[X]CD(A) for each t>0 and \\AT(t)\\ £Mitr\ then 

f&X[p, of, A ] if and only if the integral 

( /• oo \ UP 

I J t«*\\AT(t)f\\*dlj 

is finite. 

By use of this theorem one may infer some of the results due to 
M. H. Taibleson [6] for the singular integral of Poisson-Cauchy in 
w-dimensional Euclidean space, since this integral is a semi-group 
operator satisfying the conditions of Theorem 3. 

The proofs of these and further results will appear elsewhere. 
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