A SHARP FORM OF THE VIRIAL THEOREM!

BY HARRY POLLARD
Communicated by Maurice Heins, April 8, 1964

In its classical form the Virial Theorem concerns the behavior of a
system S of #» mass particles acting under Newtonian attraction in
such a fashion that the center of mass 0 remains fixed and the poten-
tial energy V satisfies V> — « for all positive time ¢. The latter con-
dition, which is not always stated explicitly, guarantees the analytic-
ity of the coordinates of the particles in the independent variable ¢;
in particular, it excludes collisions [2, pp. 324 ff.]. Let T denote the
kinetic energy and % the (constant) total energy T+ V. Let ¥ denote
the time average

t
7 = lim L V(r) dr
1w 0

if the limit exists, with an analogous definition of 7. Clearly each of
V, T exists if the other does and T+ ¥V =%. The usual theorem states
that if Sis bounded, in the sense that distances between particles and
the velocities of the particles remain bounded, then T and ¥ exist
and 27'= — V. An equivalent conclusion is

(1) T=—h

In this form the theorem is mathematically unsatisfactory because
the condition of boundedness is far from necessary. This is already
demonstrated by the parabolic case k=0 of the two-body problem,
n=2. In this case distance grows like ¢%/3, so that V behaves like
—{2% ag t— . Consequently, V=0. Hence T'=0, which is con-
sistent with (1).

We shall replace boundedness by a condition which is both neces-
sary and sufficient. Let 7;(f) denote the distance between particle j
and particle & at time ¢, and let R(¢) =max;, 75 (f).

TraEOREM 1. (1) 75 true if and only if
09 R@) = o), t— .

Let 21 denote the moment of inertia of the system with respect to
0. We begin by showing that (2) is equivalent to
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A3) I() = o(#?), {— o,

Since [2, p. 243]

4) 2IM = Z m;mkr:k,
1si<ksn

where M is the total mass, it follows from the definition of R that
I <CiR?, where C; is independent of time. On the other hand, ac-
cording to (4),

2
2IM > mm’ Z 7 ik,
where m, m’ are the two smallest masses. At each instant of time

R(t) is one of the 7j;. Therefore, 2IM >mm’'R?, so CoR?<I where C;
is a positive constant independent of time. Hence

CeR? < I < C1RY,

which implies the equivalence of (2) and (3).
From an integration it is clear that the relation

(5) I =o(t), t— o,

implies (3). That it is implied by (3) is more subtle. According to the
Lagrange identity [2, p. 235],

(6) I=T+h

Since T=0, I=h> — . By a theorem of Landau (see, for example
[1, Theorem 1B,, p. 638]) this property of I entitles us to differen-
tiate each side of (3) to obtain (5). We have proved the equivalence
of (2), (3), (5).

Now integrate both sides of (6) and divide by ¢ Then

I(t) 1 ¢ 1
@) — =—f T(r)dr+h+0<—>, t— o0,
t ¢ 0 t
It follows that (5) and (1) are equivalent. Hence so are (1) and (2).
The theorem stands established.
The next theorem holds with no a priori assumptions on the growth
of S.

THEOREM 2. We have

1 ¢

lim sup - T(r)dr = | h].
t—w 0

Denote the left-hand side by L. Since T'=—V+4k and V=0 it

follows that T=%. Hence L=h. On the other hand, according to (7)
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. I()
hmsup—-t—— = L+ h.
t—
I claim L+k=0; otherwise I(f) £ —et for large ¢, where €¢>0. Inte-
grating and dividing by £ yields
I(t
lim sup —(22 = — ¢
t—
which is impossible since 7 =20. Hence L=h, L= —h, from which the
theorem follows.

CoROLLARY. If T'=0, then h=0 and R(t) =o(%).

The first conclusion follows from Theorem 2. Then the second
follows from Theorem 1.

I am indebted to Professor M. Golomb for observing that my
original proof of the Corollary actually proves the stronger Theo-
rem 2.
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