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The group of real numbers modulo 27r is denoted by T. The Fourier 
coefficients of a distribution /x on T are denoted, as usual, by fi(n). 
If B is a space of (doubly infinite) sequences we denote by $B the 
space of those distributions fx on T for which {(l(n)}ÇzB; and if B 
isnormed we put ||A*||g^^==: || {A(#)} | |B« A closed set £ is a set of unique­
ness for B if E carries no element of $B. The purpose of this note is 
to construct sets of positive measure which are sets of uniqueness for 
lp, 1SP<2. 

LEMMA. Let e>0 , \^p<2. There exists a closed set E€iPC.T having 
the following properties: 

(1) measure (Eé,p)>2ir — e. 
(2) If ix is carried by Ee,p then ||M|| $?> S €llMII^Z^-

PROOF. L e t 7 > 0 . Put 
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(0 < x < 7 mod 2?r), 

(7 ig x < I'K mod 2ir). 
M*) = 

Then, by the theorem of Hausdorff-Young (or by direct computa­
tion) , 

H A , , â Kp\\fy\\LP ~ Kpy"»-\ where 1/p + \/q = 1. 

Choose an integer JV (large) and integers Xi, • • • , Xy "lacunary" 
enough so that, taking 7 = e/N, we have 
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IM|g:z« S 2KpN
l^~ly1^-1 = 2Kpe

l^l-y1^1^ 

so that, if N is large enough ||^||gr^ < e. Put 

Now 7?(x) = l<=»/7(Xyx) = l for all j , so that measure (Ee,p)^2w — Ny 
= 2w~e. 

AW | = \fe-in*dy,\ 
$p<e\\p\\çf> w h i c h 

Let fx be carried by E(tP, /x G ff/*, then 
= \fe-^F(x)dpL\=\^Ktn-nMm)\ Û\\F\\^M 
proves the lemma. 

THEOREM. There exists a set E of positive measure on T which is a 
set of uniqueness for Up<2 lp. 

PROOF. Take en = 10-n, £„ = 2 —en, 

E - 0 EHtP *n>Pn 
n«=36 
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1. Introduction. We consider the category whose objects are 
Banach spaces and whose maps are the linear operators of norm not 
exceeding 1 from one Banach space into another. A Banach space Z 
is injective if it has the same Hahn-Banach extension property that 
is possessed by the scalars (real or complex) ; that is, any Z-valued 
map from a subspace of a Banach space Y extends to a Z-valued map 
of the same norm on all of F. An injective envelope of a Banach space 
B is a pair (/, eB), eB an injective Banach space and / : B-*eB a 
linear isometry (our linear isometries need not be onto), such that 
the only subspace of eB that is injective and contains l[B] is eB it­
self. In this note, we demonstrate the existence and uniqueness of the 
injective envelope of a Banach space and, in the process, we give a 
short proof of the fact that an injective Banach space is linearly iso­
metric with a function space C(M), M compact Hausdorff and ex-
tremally disconnected. 


