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THEOREM 1. A right noetherian simple ring R with identity is iso­
morphic to the endomorphism ring of a unital torsion-free module M of 
finite rank over an integral domain. 

Since any right artinian ring with identity is right noetherian, this 
theorem generalizes the classical Wedderburn-Artin theorem which 
states that a right artinian simple ring with identity is (in the sense 
of isomorphism) the ring of endomorphisms of a unital module V 
over a (not necessarily commutative) field D. 

The implications of this theorem for the structure of R are not 
yet apparent to the author. For instance, does it imply that R must 
contain a nontrivial idempotent, if R is not an integral domain? 

The conclusion of Theorem 1 holds for any simple ring R with 
identity which satisfies the maximum conditions on annihilator right 
ideals and complement right ideals. According to Goldie [2] R will 
then have a classical right quotient ring R which is a simple artinian 
ring, that is, a full ring Dn of nXn matrices over a field D. Actually, 
we prove the theorem in the following setting. 

THEOREM 2. If R is a simple ring with identity which contains a 
minimal complement ( = closed = uniform) right ideal, then R is the en­
domorphism ring of a unital torsion-free module over an integral do­
main. 

OUTLINE OF THE PROOF. By a theorem of Utumi [3], the maximal 
right quotient ring S of R is a full ring of l.t.'s in a right vector space 
over a field D. I t is easily checked that there exists a primitive idem-
potent eÇzS such that K = eSer\R9é0. Then D = eSe is a field, V=Se 
is a right vector space over D, and S is naturally isomorphic to 
12 = Homjr>(F, V) under a map <t> which assigns to each s G S the ele­
ment 4>($) which satisfies 4>(s)x = sx, for all #G V. Since D is the right 
quotient field of K (Faith and Utumi [ l]) , then D is the right quo­
tient field of the subring À generated by K and e. Furthermore, 
M=Ser\R is a unital torsion-free module over A and it can be shown 
that V=MD= {xd-^xÇ^M, O ^ d G A } . Therefore any element y in 
r = HomA(ikf, M) has a unique extension y' in 12. The natural iso­
morphism *S=0 implies that T is isomorphic to the subring 
T= {s(ES\sMQM}. Since T contains R, in order to establish 
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JR==HomA(M, M), it remains only to show that TQR. Simplicity of 
R implies MR = R, and then 

R = MR= (TM)R = T{MR) = TR^T, 

that is, TQR. 
When S is the classical quotient ring of R, then Goldie's theorems 

imply that V is finite dimensional over D, and then M will have 
finite rank over A. 

We state the following corollaries without comment. 

COROLLARY 3. Let R be a simple ring with identity containing 
an idempotent e 5*0, such that A = eRe is an integral domain. Then if 
A has a right quotient field, e.g., if R is right noetherian, then R 
^ H o m A {Re, Re). 

R is a right order in S in case S is a classical right quotient ring of 
R. 

COROLLARY 4. Let S = Homi>(F, V), where V is a right vector space 
over D, and let R be a right order in S. Then, if either R is a simple 
ring with identity, or if R is a maximal right order in S, then there 
exist a right order A of D containing an identity, and a A-submodule M 
of V such that R is naturally isomorphic to Horn A (If, M). 
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