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1. Introduction. Some of the common methods used to prove exist­
ence theorems for quasilinear elliptic equations employ the Schauder 
fixed-point theorem, the Schauder-Leray theory, or some variant of 
these in a Banach space [ l ] , [3], [4]. It is also usual to consider the 
principal part of the equation to be in divergence form, when strong 
ellipticity and the Dirichlet problem are natural concepts [ l ] , [5], 
[ l l ] . This leaves the question of regularity of the solution to be dealt 
with separately. With the wealth of existence and regularity theory 
now available for general linear elliptic equations it seems desirable 
to extend this work as directly as possible to quasilinear elliptic 
equations with continuous coefficients but without assuming diver­
gence form. This announcement indicates some results on this ap­
proach. In all applications we rely on known linear existence and 
regularity theory. Unavoidably the technique requires the existence 
of an a priori estimate, but very naive estimates can be made to yield 
results easily. The results so obtained are usually not the most gen­
eral ones known in specific cases. The central ideas are presented in 
the next section as two theorems which can be both generalized and 
specialized considerably as abstract theorems. The form we have 
given however, is that most useful in applications to quasilinear el­
liptic equations. Some simple examples of the use of these theorems 
are given in the last section. Proofs and the application to general 
elliptic and parabolic equations will appear elsewhere. 

2. Existence theorems. Let X, Y be Banach spaces with norms de­
noted by | • | , in both spaces, and denote by [X, Y] the Banach space 
of continuous linear operators on X into Y with the uniform topology. 
Let 0: u-*d(u) be a not necessarily linear mapping from X into 
[X, Y] with the following properties: there exists a closed convex 
subset U of X and a subset W of Y such that 

(2.1) the restriction of 0 to U is compact, i.e., 0 maps a bounded 
sequence of elements of U into a sequence of elements of [X} Y] con­
taining a convergent subsequence, 

(2.2) the restriction of 6 to U is continuous, i.e., if \un) is a se­
quence of elements of £7, such that un—>u<E.U as n—»<*> then 
0(wn)—»0(w) in [X, Y] as w—»<*>, 
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(2.3) for each uÇiU, the range of the restriction of 6(u) to U con­
tains W, and 0(u) has an inverse defined on all of W. 

DEFINITION 2.1. If 0 satisfies (2.1)-(2.3), call u—>0(u)u a quasi-
linear map from U to W. 

If U=X, W=Y and u—>9(u)u is a quasilinear map from X to Y, 
the closed graph theorem guarantees that for each w Ç Z , there exists 
a k(u) > 0 such that |0(ft)t>| ^£(ft)|?/| for all z/GX In the case of 
general £/, W, we assume that for some fixed a ^ O , the function 
s—*k(s) defined by (2.4) (following) is positive for a t least some in­
terval of s values. Here 

(2.4) k(s) = inf inf { | 6(u)v\ + a} \v\~\ 
\u\Ss v 

where the infima are taken over the indicated ft, # £ ( / . Thus we as­
sume for 6 an a priori estimate of the form 10(u)v\ +aèk(s)\v\ for all 
ft, vÇîU with \u\ Ss. 

Using the Schauder fixed-point theorem in the form that a com­
pletely continuous, i.e., compact and continuous, map of a closed 
bounded convex subset of X into itself has a fixed point [2], [3], we 
have the following theorem. 

THEOREM 2.1. Suppose u—*6(u)u is a quasilinear map from U to Wf 

and fÇzW. If f or some s0, we have \f\ ^Sok(s0)1 then there exists a 
uÇzU, with \u\ ^so, such that 6(u)u=f. 

Let B : u—>Bu be a mapping, not necessarily linear, from X into 
y , such that 

(2.5) U C domain of B, range of B C W, 

(2.6) B is completely continuous on U. 

If W has the additional property 

(2.7) if wi, W2 G W, then w\ + W<L G W, 

then certain operators, B, satisfying (2.5) and (2.6), can be regarded 
as perturbations of 6(u)u depending on the behaviour of </>(s) defined 
by 

(2.8) <f>(s)=sup\Bu\, where the supremum is taken over UÇLU, 

with | & | g 5. 
This result is contained in the next theorem. 

THEOREM 2.2. Suppose u—>6(u)u is a quasilinear map from U to W, 
W satisfies (2.7), and B is an operator satisfying (2.5) and (2.6). Then 

file:///v/~/
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iffÇ^W, and for some s0 we have \f\ +a^s0k(so)—<t>(so)t there exists a 
uÇzU, with \u\ ^So, such that d(u)u—Bu=f. 

3. Examples. Since the method is applicable equally to Lp and 
Holder estimates we give examples of the use of both. Let G be a 
bounded domain in En. In the first two examples we assume that the 
boundary dG of G is of class C4. For functions uE:C°°(G) and p>nwe 
use the norm 

(3.1) Mk*= J Z f \D*\>dx\u> 

where the summation is over all derivatives of order :gj. Let H'iP(G) 
denote the completion of C^iG) with respect to this norm. Let 
4>(~C2(dG) and use on <j> the boundary norm ((t>h-a/p)tP defined in 
[lO]; this norm can be extended to a function in C2(dG). Let 

U = {u E H***(G); u = tf> on dG}, 

W= {weLp(G);wEC(G)}. 

EXAMPLE 1. With U, W a s in (3.2) and 0 (« )=A= £ < d2/dx2
t1 ap­

plication of Theorem 2.2 gives 

THEOREM 3.1. Let f(x, u, du/dx) be a continuous function of its 
arguments for all xÇ~G. Suppose that there exists a constant O O , and 
a function rj(t), with lim*^ 77(0=0, such that for each uÇzU> 
\f(x,u,du/dx)\ ^C+rj(tu)tu, where tu^max^ol | u\ + ^2i\du/dXi\ }. 
The problem Au=f(x, u, du/dx), in G, u~<(> on dG, then has a solution 
uEC2(G). 

REMARK 1. This theorem allows more general perturbations of A 
than those of [6], [7], [ l l ] , since it permits du/dx on the right. The 
conclusion of the theorem is valid if the Dirichlet boundary condition 
is replaced by du/dn-\-a{x)u — <i> on dG, where a(x)£C2(3G), a(x)*z0, 
and is strictly positive somewhere on dG. 

Restricting U, W further, e.g., 

17= {uEH2>v(G); « = <j>ondG,Au = Oa.e.}, 

W = {wG£*(G); w G C ( S ) , w è o} , 

we obtain as a special case of the above theorem that the classic prob­
lem Au = eu in G, u=<j> on dG has a solution u analytic in G. 

EXAMPLE 2. Let 

2 2 —3 /2 / 2 2 * 

6(u)v = (1 + Ux + «„) { (1 + Uy)Vxx — 2vxyUxUy + (1 + «*)Vyy} 
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for u, yGff2,p, i.e., d(u)u = 0 is the minimal surface equation. With 
U> W as in (3.2) a very naive calculation yields that there exist con­
stants ky 7, depending only on G, p, such that k(s)> denned by (2.4), 
satisfies 

k(s) è ki(s) = k[l + 2y2s2]-^2 

• [1 - 7 V max {2, [1 + 27 V ] 3 ' 2 [1 + 7 V]- 3 / 2} ]. 

Application of Theorem 2.1 with w = max ski(s) yields 

THEOREM 3.2. For anyJG.W, with 11ƒ110,P+(0)2—a/P)tP^^^ the prob­
lem 0(u)u=f in G, u=<p on dG has a solution uÇzC2{G). 

REMARK 2. We have not assumed that G is convex, but the condi­
tion (^)2~a/p),p^m is considerably stronger than the B.S.C. condition 
of [ l l ] , even if G is convex. Even when the region is convex a cen­
trally symmetric example on the unit disk shows that some additional 
restriction on ƒ is necessary. 

EXAMPLE 3. Using the notation of [9], let G be a bounded domain 
in En, now of class L2+a, 0 <a< 1. Suppose that <££C2+<* is given. Put 

(3,3) U = {u G C2+«; u = <j> on dG}, W = 0 G C«, 

and 

( du\ d2v / du\ dv ( 

x, u, — ) H J* I x, u, — ) h c 1 x} u, 
dx/ dXidXj \ dx/ dXi \ 

du\ 
— ) v 
dx/ 

where the summation convention has been used. We make the as­
sumption that the coefficients a*9', b\ c> are continuous functions of 
their arguments, and also that 

(i) For each uÇ^U there exists an M(u)>0, depending on u, such 
that 

max 
n / du\\ \ ( du\\ 1 / 

\al:>[x,u, — ) , p M x , u,— ) , \c[x9 

LI \ OX/ I a I \ OX/ \a I \ 

du\ 

' dx) 
M(u). 

Further 
sup M(u) = M(s), u G U, 

is finite 
(ii) For each uÇ:U there is a number m(u)>0 such that 

/ du\ _ 2 
a»M x,u, — ) bh è tn(u) ZJ & f o r r e a l %h ' ' ' > £n. 

\ dx/ i 

Further 
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inf m(u) = m(s) > 0, u Çz U. 

(iii) For each uÇ,U, c(x, u, du/dx) ^ 0 . 
From the Schauder boundary estimates we then have for any u, 
v(~zU> with 0(u)v = 0} k(s)\v\2+<x^\<l>\2+a if |^12-4-a^^ where k(s) 
= inf|W|2+agS [^W]"1» uÇzU, and c(u) is the constant normally ap­
pearing on the right in the boundary estimates, and depending on 
m(s), M(s). Using this estimate, Theorem 2.1 now gives 

THEOREM 3.3. Under the assumptions (i)-(iii) the equation 6(u)u = 0 
in G, u=<t> on dG has a solution uÇzC<L+a if there exists an SQ such that 

So&(So)è I 0 I 2+«. 

COROLLARY. If there exist numbers m, M>0 such that (i) m(s)*zm, 
(ii) M(s) ^ M for all s, then the Dirichlet problem of the preceding 
theorem has a solution f or all <£GC2+«. 

REMARK 3. The standard exposition of the theory, being based on 
the Nash-De Giorgi estimates [8], [5] for n>2, has for this reason 
been limited to equations of divergence form. This is not necessary 
above. The perturbation Theorem 2.2, can of course be applied. 
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