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Classically there are two points of view in the study of global exist
ence problems in the theory of functions of a complex variable. One 
is to piece together local solutions (such as power series), always 
staying within the category of holomorphic functions. This method 
seems to have been initiated by Weierstrass; in the theory of several 
complex variables it has been implemented by the study of cohomol-
ogy with coefficients in the sheaf of germs of holomorphic functions 
(more generally in the sheaf of germs of holomorphic sections of vec
tor bundles). The second approach is to view the Cauchy-Riemann 
equations as a linear operator on C°° functions and to study this oper
ator as an operator in Hilbert space; which leads to the Dirichlet 
integral and this method was first exploited by Riemann. In the 
theory of several complex variables this approach has led to the 
theory of harmonic integrals, which have been developed and widely 
applied in the compact case and which have recently been extended 
to the noncompact case. I t is this extension which is the main con
cern of the present lecture. For simplicity we will deal with functions 
on a domain M(ZCn, although the results carry over to forms with 
coefficients in holomorphic vector bundles on finite manifolds. 

Let s1, • • • , zn be coordinates in Cn and let xk = Re(zk) and 
yk — lm(zk). Then if u is a differentiate function we define uzk and 
u& by 

1 /du du\ 
uz*=*—l V(-l) ) 

2 W àyk) 
and 

1 /du du\ 
uêk = —( + V ( - l ) J-

2 W dykJ 
Thus a function is holomorphic if and only if ^ = 0, k — 1, • • • , n. 
Here we are concerned with inhomogeneous equations: 
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(1) u-zh = ak, k = 1, • • • , n; 

or to use the notation of differential forms 

(1') du = a, 

where l)u = ^P.u&dz* and a = Yl<Xkdzk> Roughly speaking, we ask the 
following question about the system (1): Given a "good" a is there a 
"good" u satisfying the above equations? 

Before considering this question we will illustrate how an affirma
tive answer can be used to prove the existence of global holomorphic 
functions. Our example is the Levi problem; which is: given PCEbM 
(bM denotes the boundary of M) to find a holomorphic function h 
which cannot be continued past P (that is, there is no holomorphic 
function defined in a neighborhood U of P which equals h in UC\M). 
In one variable this problem is always trivial, a solution being 
(z — P ) " 1 ; however, in several variables the problem is far from trivial 
and, in fact, it has a solution only under special circumstances. For 
example, if M is the region between two spheres, one contained in 
the other, then every holomorphic function on M has (by Hartogs' 
theorem) an extension to the interior of the larger sphere and hence 
if P is a point on the smaller sphere then every holomorphic function 
can be continued past P . Suppose that r is a real-valued C00 function 
defined in a neighborhood of bM such that dr^Q, r(Q) < 0 when 
QGM and r(Q)>0 when Q&M, then if P&M the Levi form at P 
is the hermitian form 

(2) JlrMP)oW, 
acting on w-tuples (a1, • • • , an) which satisfy the equation 

(3) Z > V ( P V = 0. 

We remark that the numbers of positive and negative eigenvalues of 
the Levi form are independent of the choice of the function r and of 
the coordinate system. If all the eigenvalues of the Levi form at P 
are positive then there exists a neighborhood U of P and a polynomial 
w such that : the only point in UC\M at which w is zero is P . This 
theorem gives a local solution to the Levi problem ; namely, the func
tion w~l is holomorphic in Ur\M, but cannot be continued past P . 
Observe that zer*1 does not in general give a global solution since it 
may be infinite at some points in M. Now let p be a C°° function with 
support [/which is 1 in a neighborhood of P and let a = ̂ (pw~l). Then 
a is "good" in the sense that it is C00 on M (in fact it is zero in a 
neighborhood of P ) . Now suppose that there exists a "good" u such 
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that du = a, so that in particular u is defined at P , then we obtain a 
global solution to the Levi problem h by setting h~u~~pw~l. Clearly 
dh = Q and h cannot be continued past P . 

Our first observation about the system (1) is that since Uik&n = U'&mik 
we conclude that the components of a satisfy the equation 

whenever there exists u that satisfies (1). We denote (C°°(M))P the 
space of ^-tuples of complex-valued C00 functions on M, we set 
a* = c»(M), al = (c»(M))n and a2 = (C^F))^-1^2. if eea2 we 
index its components by ordered pairs of integers, i.e., 6 = (dkm), where 
lSk<m^n; 0 can also be considered as the 2-form 0 = ^OkmdzWz™. 
Now we define the operator 5 : a1--»^2 by 

( <j>kz™ — <t>mz*> U k < M, 
(4) 50 = < 

\ — <t>kzm + <t>mzk iî k > m. 

So that Sa — 0 is a necessary condition for the existence of a solution 
u of (1). On (C°°(M))P we define the L2-inner product and norm by: 

(5) (0,u) = E f M^F and |M|2 = (0,0), 

where d V denotes the volume element. In terms of this inner product 
the condition Sa = 0 can be expressed by requiring (a, 5*0) = 0 for all 
0£(B2, where 5* is the Hubert space adjoint of 5 and (B2 is the inter
section of a2 with the domain of 5*. For the above application it 
would suffice if we knew that the following orthogonal decomposition 
holds : 

(6) a1 = da° ® 5*(B2, 

which is equivalent to the statement that (1) has a solution if and 
only if Sa = 0. 

We will now indicate briefly how (6) is obtained. We denote by d* 
the Hubert space adjoint of d and by (B1 the intersection of a 1 and 
the domain of d*. 

The basic estimate. Suppose that M is compact and that it has 
smooth boundary given by a function r as above ; and that, for every 
PÇLbM the Levi form at P either has all eigenvalues positive or it 
has at least two negative eigenvalues. Then there exists a constant 
C > 0 such tha t : 

(7) Z I M I 2 + E f I 4>k VdS è C(pV||2 + INI2) 
k,m h J bM 
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for all 0G(B\ where dS is the volume element of bM. 
Let Q be the hermitian form on (B1 defined by 

(8) 0(0, *) = (5**, dV) + (5*, 50). 

Now if 0 G & 1 and S<j>G®>\ then 

(9) 0(0, 0) = (dd*0 + 5*50, 0) 

for all 0G® 1 . We remark that Q(0, 0) corresponds to the classical 
Dirichlet integral. The basic estimate is used to prove that : given 
a G ® 1 there exists 0GCB1 such that : 

(10) Ç(0, 0) = (a, 0) 

and this implies that 50 G (B2 and 

(11) ôâ*0 + 5*50 = a. 

I t should be observed that the above equation, in terms of coordi
nates, gives: 

2^ <t>kzhj = <*&, k = 1, • • • , n. 
3 

Now if for any aGCfc1 there exists 0 as above, then we obtain the 
decomposition : 

(12) a1 = dd*e e s*se, 
where 6 = {0GCB1! 50G(B2}. Clearly (12) implies the decomposition 
(6). Thus our problem is reduced to solving (10). 

To solve (10) we first show that the basic estimate implies certain 
"a priori" estimates for (10). By an "a priori" estimate is meant a 
bound on some norm applied to the solution 0 in terms of a; that is, 
bounds on the assumption that a solution exists. If the basic estimate 
holds then for each integer s^O there exists Cs>0 such that : 

(13) ||0|| ^ ColMI and | |0| | . ^ C.||a||^i if s à l, 

for all 0GCB1 with S<j>E:(&2, where a is given by (11). The norms || ||, 
are defined by: 

(i4) y.1- S ZlK---^ll\ 

where 

(d/dx* if 1 ^ i S n, 

Xd/dy1-" if n < i ^ In. 
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The estimates (13) show that <j> "gains" one derivative. In the 
standard theory for boundary value problems of second order elliptic 
systems the solution "gains" two derivatives, i.e., one obtains esti
mates of the form | |#| |«^const ||a||,_2; such estimates are called coer
cive, they have been extensively studied and they imply an existence 
theorem of the type that we require. In the case of our problem it 
can be shown that coercive estimates do not hold; nevertheless, the 
problem can be "approximated" by regular problems for which coer
cive estimates hold and the required existence theorem is obtained 
by taking a limit of the solutions of the approximating problems. The 
approximating problems correspond to the forms Q€ defined by: 

(15) Q.fo, $) = Qfo, *) + e £ (Z><&, Dfa) 

for € > 0 and $, ^GCB1. Then given « G o 1 there exists a unique <£eG<Bx 

such tha t : 

(16) Q.(*., ft = (a, *) 

for all t/'GCB1. Furthermore the <£6 satisfy the estimates (13) with con
stants that are independent of e. I t then follows that there is a se
quence {e*}—»0 such that {<£e„} is a Cauchy sequence in the norm 
|j ||• for every s, hence the limit <£ is in Q} and gives the required 
solution. 

To conclude we will give the proof of the basic estimate in a special 
case. 

Proof of the basic estimate when the Levi form is positive definite. 
First, by integration by parts we have 

(<£, du) = (— X) <fe*, u) + X) I rzk<t>küdS 
J bM 

so that if 0 G & 1 we have 

(17) 2>«*tf* = 0 on JM 

and 

(18) d*tf> = - X>***. 

Since X/**0* vanishes on bM then at each point of bM its gradient 
equals \dr, where X is a function on bM. Thus differentiating with 
respect to zm we obtain 

22 r#*i»0* + ]C r«*0M» = ^r*m 0 n bM, 
h k 
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then multiplying by $m, summing with respect to m and applying the 
conjugate of (17) to the right side, we have: 

k,m k,m 

and since the Levi form is positive definite there exists a constant 
such that 

(19) — Re X) rzh<t>kjim$m ;> const ]T) | <t>k |
2. 

k,m 

Now 

INI2 = Z life™ - «Ml2 

/or\\ k<m 

— Zs I I ^ H I 2 ~~ ^ ( f e m > <t>mzk) 
k,m k,m 

and integrating by parts twice, we have: 

2^t (<feTO, <t>mzk) = Z~, (<t>kzk, <t>mzm) -~ Z ^ I <l>kzkrzm<I>mdS 
J bM 

+ 2 u I rzk<t>kzm<l>mdS. 
J bM 

Now by (18) the first term on the right equals ||d*</>||2 and by (17) 
the second term vanishes. The desired estimate is then obtained by 
substituting this into (20) and applying (19). 

Our purpose in the preceding is to introduce the reader to some of 
the ideas used in this approach to several complex variables, we have 
left bibliographical remarks to the end. Here we give a representative 
selection of the recent articles on the topics discussed above. The 
Levi problem for domains over C2 was first solved by K. Oka (see 
Domaines d'holomorphie, J. Sci. Hiroshima Univ. Ser. A 7 (1937), 
115-130). This solution was generalized independently by H. Bremer-
mann, F. Norguet and K. Oka in articles that appeared in 1954. A 
solution based on differential equations was outlined by L. Ehrenpreis 
in Some applications of the theory of distributions to several complex 
variables, Conference on Analytic Functions (1957), 65-79. The prob
lem for manifolds was solved, using methods of sheaf theory by 
H. Grauert in On Levi's problem and the imbedding of real-analytic 
manifolds, Ann. of Math. (2) 68 (1958), 460-472. 

A variant of the problem described here was first formulated by 
P. R. Garabedian and D. C, Spencer in Complex boundary value prob
lems, Trans. Amer. Math. Soc. 73 (1952), 223-242. The basic estimate 
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was established in a special case by C. B. Morrey in The analytic 
embedding of abstract real-analytic manifolds, Ann. of Math. (2) 68 
(1958), 159-201. The complete solution of the ö-Neumann problem 
(that is the boundary problem discussed here) for strongly pseudo-
convex manifolds (i.e. when the Levi form is positive definite) was 
obtained by the author (see Harmonic integrals on strongly pseudo-
convex manifolds. I, Ann. of Math. (2) 78 (1963), 112-148; II, ibid. 
79 (1964), 450-472). Those papers also include various applications 
including the new solution of the Levi problem outlined here. The 
method of approximation by coercive problem is explained in Non-
coercive boundary value problems, J. J. Kohn and L. Nirenberg, J. Pure 
Appl. Math, (to appear). The extension of the method to the case of 
Levi forms with some negative eigenvalues and other generalizations 
and applications were obtained by L. Hörmander in Existence theo
rems f or the d operator by L2 methodst (to appear). Some of these re
sults were previously conjectured in the above-mentioned paper by 
Enrenpreis and proved by A. Andreotti and H. Grauert in Théorèmes 
definitude pour la cohomologie des espaces complexes, Bull. Soc. Math. 
France 90 (1962), 193-259. 
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