RESEARCH PROBLEMS

10. R. M. Redheffer: Operators on Hilbert space.

Let u, r, s, w, z denote closed linear operators defined on a Hilbert space H, with $r \neq 0, s \neq 0$ and $\|w\| \leqq 1$. Define operators

$$
f(z)=u+r z(1-w z)^{-1} s, \quad S_{\lambda}=\left(\begin{array}{cc}
r \lambda & u \\
w & \lambda^{-1} s
\end{array}\right)
$$

on H and $H \times H$, respectively, λ being a positive scalar. As norm $\|u\|$ we take sup $|u v|$ for $v \in H,|v|=1$, and similarly in other cases, such as $\left\|S_{\lambda}\right\|$. Lengths on $H \times H$ are related to those on H by

$$
\left|\left(v_{1}, v_{2}\right)\right|^{2}=\left|v_{1}\right|^{2}+\left|v_{2}\right|^{2}, \quad v_{i} \in H
$$

Problem A. Give a simple proof of the following: If $\|f(z)\| \leqq 1$ for all $\|z\| \leqq 1$ such that $(1-w z)^{-1}$ exists, then $\left\|S_{\lambda}\right\| \leqq 1$ for some λ.

Problem B. Give a simple proof of this: If $\sup \|f(z)\|<1$ for $\|z\| \leqq 1$, then $f(z)$ has a fixed point in $\|z\|<1$.

Problem C. What happens in Problem B if we only have $\|f(z)\| \leqq 1$ for $\|z\| \leqq 1$?

Problem D. Let U denote the class of unitary operators, and N the class with norm $\leqq 1$. Study the class of functions $h(z)$ that satisfy a "maximum principle" in the following sharp form:

$$
\sup _{z \in N}\|h(z)\|=\sup _{z \in U}\|h(z)\| .
$$

In Problems A and B the emphasis is on the word "simple." Both results have been established, but the only known proof is harder than the depth of the problems seems to warrant. I expect a simple proof because: the converse of Problem A is easy; both problems are easy when the unit ball is compact, e.g., matrices; the two problems are easily proved equivalent to each other; the appropriate form of Problem A when " $\|f(z)\| \leqq 1$ for $\|z\| \leqq 1$ " is replaced by " $f(z)$ unitary for z unitary" is easy; and the fact that $f(z)$ can be written $(a+b z)(c+d z)^{-1}$ suggests connections with many well-known theories.

In Problem D the theory developed should include the known fact that $f(z)$ has the stated property when $\|w\|<1$. (Received July 7, 1964.)

11. Solomon W. Golomb: Random permutations.

Let L_{N} be the expected length of the longest cycle in a random permutation on N letters, and let $\lambda_{N}=L_{N} / N$. (Thus, $\lambda_{1}=1, \lambda_{2}=3 / 4$, $\lambda_{3}=13 / 18, \lambda_{4}=67 / 96$, etc.) It is easily shown that the sequence $\left\{\lambda_{N}\right\}$ is monotonically decreasing, and hence a limit λ exists. Computation has shown $\lambda=.62432965 \cdots$, but nothing is known of the relationship of λ to other constants. What can be proved about the irrationality or transcendence of λ, and its relationship to classical mathematical constants? (Some nearby values unequal to λ include $5 / 8,1-e^{-1},\left(5^{1 / 2}-1\right) / 2$, and $\pi / 5$.) (Received June 8, 1964.)

ERRATA

Robert R. Korfhage: Correction to 'On a sequence of prime numbers.'
It has been brought to my attention that because of the lack of an overflow check in the programming system used the factors listed for $n=7$ are in error. Thus the value of P_{8} is also wrong. Present knowledge indicates that probably $P_{9}>P_{8}$, and thus Mullin's problem is still open. (Received July 16, 1964.)

