THE METASTABLE HOMOTOPY OF $O(n)$

BY M. G. BARRATT AND M. E. MAHOWALD

Communicated by E. Dyer, June 25, 1964
It is not easy to determine how many trivial line bundles can be split off a stable real vector bundle; the first crucial question concerns bundles over a $4 k$-sphere. The following result is best possible for the stated spheres:

Theorem 1. A nontrivial stable real vector bundle over $S^{4 k}$ is the sum of an irreducible $(2 k+1)$-plane bundle and a trivial bundle, if $k>4$.

This theorem follows from, and implies, the following theorem. The homotopy group $\pi_{q}(O(n))$ is stable for $q<n-1$ (in which case it has been described by Bott [1]), and metastable for $q<2(n-1)$. Except for the special cases $n \leqq 12$ the metastable groups are related to the stable groups by

Theorem 2. For $q<2(n-1)$ and $n \geqq 13$,

$$
\pi_{q}(O(n))=\pi_{q}(O) \oplus \pi_{q+1}\left(V_{2 n, n}\right)
$$

In fact, splitting occurs in the homotopy sequence of the fibration $O(2 n) \rightarrow V_{2 n, n}$ at the stated groups. The behaviour in the omitted cases is easily determined from known results.

It follows that the metastable homotopy groups of $O(n)$ exhibit a periodicity, for the second summand is a stable homotopy group of the Stiefel manifold: by [4],

$$
\pi_{q+1}\left(V_{2 n, n}\right) \approx \pi_{q+1}\left(R P^{\infty} / R P^{n-1}\right)
$$

Now James has shown [2] that these have a periodicity in a natural way, and in particular that if t denotes the number of nonzero homotopy groups of O in dimensions $\leqq q-n$, then

$$
\pi_{q+1}\left(V_{2 n, n}\right) \approx \pi_{q+1+m-n}\left(V_{2 m, n}\right)
$$

for all $m \geqq n$ such that $m-n$ is divisible by 2^{t}. This isomorphism can be induced by a map of the appropriate skeleton of $V_{2 n, n}$ into $\Omega^{m-n} V_{2 m, m}$, and so is similar to Bott's periodicity for the stable homotopy groups.

However, the metastable periodicity in $O(n)$ does not arise in exactly the same way as Bott's. The similarity and the difference are shown by the next theorem.

Theorem 3. The natural fibration $\Omega^{8^{8}} B S O(n) \rightarrow \Omega^{8 s} B S O$ has a crosssection over the ($n+4 s-7$)-skeleton, but in general $B S O(n) \rightarrow B S O$ does not have a cross-section over skeletons of dimension $\geqq n$.

It follows that if $q=n+4 s-7$, and t (described above) is $\geqq 3$, then $\Omega^{8 s} B S O(n)$ and $\Omega^{8 s+2^{t}} B S O\left(n+2^{t}\right)$ have the same q-type, but $B S O(n)$ and $\Omega^{2^{t}} B S O\left(n+2^{t}\right)$ do not have the same n-type.

Complete proofs and some applications will appear later; a sketch of the proof of Theorem 1 is given below.

Sketch proof. Theorem 1 is implied by
Theorem 1*. $\pi_{4 k}(B S O(n)) \rightarrow \pi_{4 k}(B S O)$ is trivial if $n \leqq 2 k$, and onto if $k>4$ and $n \geqq 2 k+1$.

The first part is easy. For the second part, by Bott periodicity there are homotopy equivalences

$$
B S p \equiv \Omega^{8} B S p \equiv \Omega^{8 m+4} B S O \quad(m \geqq 4)
$$

so that there are adjoint maps

$$
\beta_{m}: \Sigma^{8 m+4} B S p \rightarrow B S O, \quad \beta: \Sigma^{8} B S p \rightarrow B S p
$$

Then β_{m} includes an epimorphism of homotopy groups in dimensions $\geqq 8 m+8$, and factorizes into $\beta_{m-1} \circ \Sigma^{8 m-4} \beta$ for $m \geqq 1$. Calculation of

$$
\beta^{*}: H^{4 k}(B S p ; Z) \rightarrow H^{4 k}\left(\Sigma^{8} B S p ; Z\right)
$$

shows that its image is divisible by 8 if k is odd, and by 4 if k is even.
Now the fibre of $B S O(n) \rightarrow B S O(n+4)$ is $V_{n+4,4}$, and the property of β^{*} together with Toda's result [3] that

$$
8 \pi_{n+r}\left(V_{n+4,4}\right)=0 \quad(n \text { odd }, r<n-1)
$$

enables classical obstruction theory to prove by induction on m, with a little care,

Lemma 4. $\beta_{m}: \Sigma^{8 m+4} B S p \rightarrow B S O$ can be deformed so as to map the $8 k$-skeleton into $B S O(8 k+1-4 m) \subset B S O$.

The analogous but more delicate result for the $(8 k+8)$-skeleton is too complicated to merit description here. These results are not sharp enough to prove Theorem 1* at once; the proof is concluded by observing that the generator of $\pi_{4 k}(B S p)$ can be represented by a composition

$$
S^{4 k} \xrightarrow{f} X \xrightarrow{g} B S p,
$$

where X is a $(4 k-16)$-fold suspension of the Cayley plane. The co-
homology maps f^{*}, g^{*} can be computed sufficiently accurately for the proof to be completed by the same kind of obstruction argument as before.

References

1. R. Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313-337.
2. I. M. James, Cross sections of Stiefel manifolds, Proc. London Math. Soc. (3) 8 (1958), 536-547.
3. H. Toda, The order of the identity map of a suspension space, Ann. of Math. (2) 78 (1963), 300-325.
4. J. H. C. Whitehead, Note on $\pi_{r}\left(V_{n, m}\right)$, Proc. London Math. Soc. (2) 48 (1944), 243-291.

University of Chicago,

 Manchester University, andNorthwestern University

