HOLOMORPHIC CONVEXITY OF TEICHMÜLLER SPACES¹

BY LIPMAN BERS AND LEON EHRENPREIS

Communicated June 22, 1963

Let B be the complex Banach space of holomorphic functions $\phi(z) = \phi(x+iy)$ defined for y < 0, with norm $||\phi|| = \sup |y^2\phi(z)|$. The universal Teichmüller space T may be considered as a subset of B defined as follows [2], [7]. $\phi \in B$ belongs to T if and only if there is a quasiconformal selfmapping w(z) of the z-plane which leaves 0 and 1 fixed and is, for y < 0, a conformal mapping with Schwarzian derivative $\phi(z)$. If this is the case we say that w belongs to ϕ . T is a bounded domain in B containing the origin. The so-called Teichmüller metric (see below) is defined in T; it is topologically equivalent to the metric of B. Every boundary point of T has infinite Teichmüller distance from the origin.

If $Q \subset T$, we denote by h(Q) the hull of Q with respect to continuous holomorphic functions in T. $\psi \in T$ belongs to h(Q) if and only if there is no continuous holomorphic function f in T such that $|f(\psi)| > |f(\phi)|$ for all $\phi \in Q$.

THEOREM 1. If $Q \subset T$ is bounded in the Teichmüller metric, so is h(Q).

PROOF. For $\phi \in T$ let $K(\phi)$ denote the smallest dilitation of a mapping w belonging to ϕ . The function $K(\phi)$ is well defined and $\log K(\phi)$ is the Teichmüller distance of ϕ to the origin.

For $\phi \in T$ and any three real numbers a < b < c set $f_{a,b,c}(\phi) = (w(b) - w(a))/(w(c) - w(a))$ where w is any mapping belonging to ϕ . These functions are well defined and one verifies, using [3], that they are continuous and holomorphic in T.

Let $\phi \in T$ and $K(\phi) \leq \alpha$. Then there is a w belonging to ϕ with dilitation not exceeding α . Let Γ be the image of the real axis under w; this curve depends only on ϕ . Set $\chi(\zeta) = w(w^{-1}(\zeta)^*)$ where the asterisk denotes complex conjugation. Then χ is a quasireflection about Γ , that is an orientation-reversing topological selfmapping of the plane which leaves every point of Γ fixed, and the dilitation of χ is at most α^2 . By a theorem of Ahlfors [2] it follows that $|f_{a,b,c}(\phi)| \leq \beta$ for all a < b < c, where β depends only on α .

Assume now that $|f_{a,b,c}(\phi)| \le \alpha$ for all a < b < c and let Γ be the image of the real axis under a mapping w belonging to ϕ . Again by

¹ Work supported under Contract No. Nonr-285(46) with the Office of Naval Research.

[2], there exists a quasireflection χ about Γ of dilitation not exceeding β , where β depends only on α . Set $w_1(x+iy) = w(x+iy)$ for $y \le 0$ and $w_1(x+iy) = \chi(w(x-iy))$ for y > 0. Then w_1 belongs to ϕ and the dilitation of w_1 is at most β .

We conclude that if $K \leq \alpha < \infty$ on a set $Q \subset T$, then $K \leq \alpha' < \infty$ on h(Q) where α' depends only on α . This proves the theorem.

Let G be a Fuchsian group with the real axis as fixed line. Let B(G) be the closed subspace of B consisting of those elements for which $\phi(z)dz^2$ is invariant under G. The Teichmüller space T(G) of quasiconformal deformations of G may be identified with a domain in B(G), namely the component of $T \cap B(G)$ containing the origin [6], [7], [8]. We note that dim $B(G) < \infty$ if and only if G is finitely generated and of the first kind.

If $Q \subset T(G)$ is bounded in the Teichmüller metric, the same is true of the hull $h_G(Q)$ of Q with respect to continuous holomorphic functions in T(G), for $h_G(Q) \subset h(Q)$. If dim $B(G) < \infty$, this means that T(G) is holomorphically convex in the sense of Cartan-Thullen; thus we obtain

THEOREM 2. Finite-dimensional Teichmüller spaces are domains of holomorphy.

This theorem applies, in particular, if G is a hyperbolic group representing a closed Riemann surface of genus g>1. In this case T(G) may be identified with the Teichmüller space T_g of such Riemann surfaces, and Theorem 2 yields some information on period matrices.

Let H_g denote the set of symmetric $(g \times g)$ matrices with positive definite imaginary parts (Siegel's generalized upper half-plane). There exists a natural holomorphic mapping $t \rightarrow Z(t)$ of T_g into H_g defined as follows. A point $t \in T_g$ may be considered as (the conformal equivalence class of) a closed Riemann surface S(t) together with a "standard" system of generators $\{a_1, b_1, a_2, \cdots, b_g\}$ of the fundamental group of S(t). This system of generators defines a canonical homology basis $\{\alpha_1, \beta_1, \cdots, \beta_g\}$ on S(t). We set $Z(t) = (Z_{ij})$, where Z_{ij} is the period over β_j of the Abelian differential of the first kind on S(t) which has periods 1 over α_i and 0 over α_k , $k \neq i$.

We denote the closure of $Z(T_g)$ in H_g by A_g and set $B_g = A_g - Z(T_g)$. By Baily's theorem [4], A_g and B_g are analytic sets.

THEOREM 3. For g > 3, every point $b \in B_g$ with $\dim_b B_g < 3g - 4$ is a singular point of A_g .

PROOF. It is known [1], [5], [9] that dim $T_g = 3g - 3$ and that the points $t \in T_g$ such that S(t) is hyperelliptic form a (2g-1)-dimensional subvariety T'_g . Also, the rank of Z is 3g-3 at all points of $T_g - T'_g$ and 2g-1 at points of T'_g (so that $A_2 = H_2$, $A_3 = H_3$). We denote by C_g the closure of $Z(T'_g)$ in H_g .

Let g>3 and assume that there is a $b\in B_g$ with $\dim_b B_g=q\le 3g-5$ which is a regular (simple) point of A_g . Then $b\notin C_g$ and there exists a neighborhood M of b in H_g such that M does not meet C_g , $M\cap A_g$ is holomorphically homeomorphic to a simply-connected domain in a (3g-3)-dimensional number space, and $\dim(M\cap B_g)=q$. Set $N=(M\cap A_g)-(M\cap B_g)$. Then N is a simply-connected domain in $Z(T_g)$ and there exists a domain $N_0\subset T_g$ such that $Z\mid N_0$ is a homeomorphism onto N. There is a sequence $\{t_j\}\subset N_0$ such that $\lim_{g\to g} Z(t_g)$ is g. This sequence diverges in g so, by Theorem 2, there is a holomorphic function g in g such that the sequence g is unbounded. But g is g in g such that the sequence g is holomorphic in g and hence, by Hartogs' theorem, can be continued analytically over g in g and the sequence g is converges. Contradiction.

REMARK. It is very likely that dim $B_{g} = 3g - 5$ (though there seems to be no proof of this in the literature). If so, our result can be restated as

THEOREM 3'. For g > 3 the singular set of A_g is $B_g \cup C_g$.

Note added in proof (September 20, 1964). Theorem 3' is indeed valid since dim $B_g = 3g - 5$. More precisely, every element of B_g is of the form $\beta(Z)$ where Z is a direct sum of k > 1 matrices $Z_j \in A_{g_j}$ with $g_1 + \cdots + g_k = g$ and β is an element of the group Γ_g of holomorphic automorphisms of H_g defined by integral symplectic matrices. A derivation of this statement from the results of Matsusaka and Hoyt (see [4] for references) has been communicated to us by Mumford. The key fact is that for a fixed integer n > 3 the complex manifold $X = H_g/\Gamma_g(n)$, where $\Gamma_g(n)$ denotes the subgroup of Γ_g corresponding to matrices congruent to the identity mod n, can be realized as a Zariski open subset of a projective algebraic variety, and that the canonical family of polarized Abelian varieties defined over H_g is induced by an algebraic family defined over X.

We also note that the proof of Theorem 3 can be refined so as to give the following sharper result. Let b be a point of B_{g} but not of C_{g} , and let M be a connected neighborhood of b in H_{g} which does not meet C_{g} . Then the intersection of M with $A_{g}-B_{g}$ has an infinite fundamental group.

REFERENCES

- 1. Lars Ahlfors, The complex analytic structure of the space of closed Riemann surfaces, pp. 45-66, Analytic functions, Princeton Univ. Press, Princeton, N. J., 1960.
 - 2. ——, Quasiconformal reflections, Acta Math. 109 (1963), 291-301.
- 3. Lars Ahlfors and Lipman Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385-404.
- 4. W. L. Baily, Jr., On the moduli of Jacobian varieties, Ann. of Math. (2) 71 (1960), 303-314.
- 5. Lipman Bers, Holomorphic differentials as functions of moduli, Bull. Amer. Math. Soc. 67 (1961), 206-210.
- 6. ——, Correction to "Spaces of Riemann surfaces as bounded domains," Bull. Amer. Math. Soc. 67 (1961), 465-466.
- 7. ——, Automorphic forms and general Teichmüller spaces, Proc. Conf. Compl. Anal., Univ. of Minnesota, Minneapolis, Minn., Univ. of Minnesota Press, (to appear).
- 8. C. J. Earle, The Teichmüller space of an arbitrary Fuchsian group, Bull. Amer. Math. Soc. 70 (1964), 699-701.
- 9. H. E. Rauch, On the transcendental moduli of algebraic Riemann surfaces, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 42-49.

NEW YORK UNIVERSITY