RESEARCH PROBLEMS

1. W. R. Utz: The equation $f^{\prime}(x)=a f(g(x))$.

Determine conditions for the existence of a real function $f(x)$, not identically zero, satisfying $f^{\prime}(x)=a f(g(x))$ wherein a is a given real constant and $g(x)$ is a given real function. The prime denotes differentiation with respect to x. In general, the equation is not included in the theory of differential equations.

The equation $f^{(n)}(x)=f\left(x^{-1}\right)$ has been solved by P. N. Sarma [1] and L. Silberstein [2].

More generally, it is only an exercise to determine analytic solutions, when they exist, of $f^{(n)}(x)=a f\left(b x^{s}\right)$ when appropriate reals n, a, b, and s are given. For example, the functions $f(x)=A(\sin a x$ $+\cos a x)$ satisfy $f^{\prime}(x)=a f(-x)$ and the functions $f(x)=A \cosh a x$ $+B \sin a x$ satisfy $f^{\prime \prime}(x)=a^{2} f(-x) . A$ and B are arbitrary real constants.

References

1. P. N. Sarma, On the differential equation $f^{(n)}(x)=f\left(x^{-1}\right)$, Math. Student 10 (1942), 173-174.
2. L. Silberstein, Solutions of the equation $f^{\prime}(x)=f\left(x^{-1}\right)$, Philos. Mag. 30 (1940), 185-187.
(Received September 10, 1964.)
