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We outline in this paper generalizations of some theorems of Hula-
nicki on the existence of dense subsets of small cardinality in product 
measure spaces and in compact groups. We then apply a special case 
of these results to show the existence of the Kakutani-Oxtoby meas­
ure for the case of compact connected Abelian topological groups. A 
more detailed paper will appear later on. 

DEFINITION. Let Cfc, (B be collections of nonvoid sets of a space X. 
Then Cfc is a weak base for (B if and only if given J3£(B there is an 
,4 G G such that ACB. 

If A is a set then | A \ denotes the cardinal of A ; n will always de­
note an infinite cardinal. 

The following theorem generalizes Hulanicki [7, Theorem l ] . 

THEOREM 1. Let X = PteTXt, where {(Xtl &*): tÇzT} is a family of 
measurable spaces, each having a weak base of cardinal at most n^° , and 
| T\ 5^2". Then the product measurable space (X, <B) has a weak base OL 

for the a-field (B for which \d\ g n ^ ° . 

The proof uses the following lemma. 

LEMMA 1. Let T be any set such that \T\ =2 n ; then there exists a 
family 21 of sequences {Bi }/Lx of pair wise disjoint subsets of T such that 

(0 |2l|^n«°, 
(ii) for any distinct sequence {^}i°li in T, there exists a sequence 

{5»}*°li£2l such that t^Bifor each i. 

This lemma can be proved by noticing that there is a 1-1 cor­
respondence of T with { — 1, 1 }n, and this latter set has at most n^° 
closed G$ sets. 

Let X be a topological space. Let w{X) denote the least cardinal 
of a basis of open sets for X. I t is not difficult to show that if H is a 
compact Abelian group and if w(H) ^ n , then H has at most n^° closed 
Gs sets. Thus, trivially, there is a weak base for the Baire sets of H 
having cardinal at most n^>°. 

1 This research was supported in part by an NSF fellowship. It will be used in 
partial fulfillment of the requirements for the Ph.D. at the University of Rochester. 
I wish to thank Professor K. A. Ross for the suggestion of the problem in the title 
of this paper and for his invaluable guidance and criticism. 
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COROLLARY 1. Let G—PterHt, where each Ht^H, H is a compact 
Abelian group, w(H) <|n, and \ T\ ^ 2 n . Then w(G) ^ 2 n and there is a 
weak base for the Baire sets of G having cardinal at most n^° . 

Kakutani [8] has shown that if w(H)=n, then \H\ =2 n (see also 
[3, 24.47]). Thus the following holds. 

COROLLARY 2. Let G = PteTHt, where each Ht = H, H is a compact 
Abelian group, w(H) g n , and \ T\ g22". Then there is a weak base for 
the Baire sets of G having cardinal at most 2n. 

COROLLARY 3. Let G be as in Corollary 2. Then G has a dense pseudo-
compact subgroup J which necessarily has Haar outer measure one and 
\J\ S2n. 

This follows from a theorem of Comfort and Ross [ l ] which states 
that a totally bounded group G is pseudocompact if and only if each 
nonempty Baire subset of G meets G, where S is the Weil completion 
of G. We note in the proof that if H is a compact group and if A C.H, 
then A has Haar outer measure one if and only if Ar\B7£0 for each 
Baire set B of positive measure. 

THEOREM 2. Let G be a compact Abelian topological group satisfying 
w{G) =* 2n for some infinite cardinal number n. Then 

(i) G has a weak base for its Baire sets of cardinal at most n^° , 
(ii) G contains a dense pseudocompact subgroup J such that \j\ 

<Jn^°; necessarily J has outer measure one. 

This theorem is proved by using Corollary 1 and the following 
theorem of Vilenkin [ l l ] : Let G be a compact Abelian group. For 
some cardinal number m, there is a continuous mapping of { — 1, 1 }m 

onto G; m can be taken to be max[N0, f ], where r is the rank of the 
character group of G. 

We may observe that Theorem 2 is a generalization of a theorem of 
Hartman and Hulanicki [2]: If G is a compact group satisfying 
\G\ ^ 2 2 " and if the generalized continuum hypothesis holds, then 
there is a dense subgroup HCZG satisfying \H\ ^tt . We note here that 
we did not use the generalized continuum hypothesis. Finally, part 
(i) of Theorem 2 appears to contain Theorem 2 of Hulanicki [7], 

We next prove a special case of Corollary 2. We note that Corollary 
2 is an existence theorem. We will now construct a set that is actually 
a weak base for the closed Gi sets of G in Corollary 2. 

Let G be as in Corollary 2. Let 91 be the collection of closed G« sets 
of H. As above we note that | 311 ^ n ^ ° . Let 21 be the collection of se­
quences of pairwise disjoint sets in T satisfying (i) and (ii) of Lem­
ma 1. 
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DEFINITION. An (31, 91)-cylinder set in G is a set of the form 
^=ni

8l1{nt(0€B(t)7Tt7i)(iV'e(i))}, where {£(*')}i-i€:$tt> and for each i, 
all Nt(i) — Ni for some iVi<E9l. 

Let Ca be the collection of all (21, 91)-cylinder sets in G. It is im­
mediate from Lemma 1 that | Ca| ^ 2 \ 

THEOREM 3. Let G be as in Corollary 2. Then Qs is a weak base for 
the closed G& sets in G. 

The proof of this theorem uses the following lemma and the re-
flexivity of the property of being a weak base. 

LEMMA 2. Let G be as in Corollary 2. Then the collection g* of all non-
void closed G$ sets in G of the form OfLi TT^C^'C*))» w^ere {̂ W } £ i C ^ \ 
and iV«(,)G9l/ör each i, is a weak base for the closed Gt sets in G. 

Kakutani and Oxtoby [lO] proved that Haar measure in a compact 
metric group may be extended to a much larger <7-field of subsets of 
the group and still remain invariant under group translation and in­
version. To be more precise we introduce the following definition. 

DEFINITION. The character of a measure space (X, S, fx) is the 
smallest cardinal number m for which there is a subfamily (RCS 
such that |(R| = m and such that for each S £ S and each €>0, there 
exists a set .REGI satisfying jx(SAR) <€. 

It is well known that the character of the Haar measure space of a 
compact infinite metric group is Ko- Kakutani and Oxtoby showed 
that there is an extension of Haar measure with character 2C. 

Kakutani and Kodaira [9] showed that there is an extension of 
Haar measure on the circle of character c. Hulanicki [7], using Theo­
rem 1 of his paper, showed that the method of Kakutani and Kodaira 
may be used to get an extension of character 2C. 

THEOREM 4. Let H be a compact connected Abelian topological group 
satisfying w(H) = n. Then there exists a translation- and inversion-
invariant extension of Haar measure on H of character 22". 

We remark that for a compact infinite Abelian group G it is easy 
to show that the character of the Haar measure space of G is equal 
to w(G). Thus the character of the Haar measure space of H in the 
above theorem is n. Our method of proof of Theorem 4 is similar to 
that of Kakutani and Kodaira. We briefly outline the proof in the 
following theorem and lemmas. 

THEOREM 5. Let G be as in Corollary 2. Let j3£!T be fixed. Let 
<fy C ©i consist of those (21, 91) -cylinder sets of the form 
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n*-i{rit(n)€B(n)7r/7n)(-^n)} that satisfy &(EB(i) for some i and Ni has 
positive Haar measure in H for this i. Then 6>p is a weak base for the 
closed Gs sets in G having positive Haar measure. 

REMARK. I t is clear from the construction of (fy that \(?p\ ^2 t t and 
if A £(P/3 then irp(A) has positive Haar measure in H$ and is a closed 
G s there (wp is the projection onto Hp). 

LEMMA 3. Let G be a compact Abelian topological group. Let MC.G 
be a set of positive Haar measure. Then M contains a maximal inde­
pendent set of elements of infinite order in G. 

This lemma is a consequence of a well-known theorem which states 
(using additive notation) that if M has positive Haar measure in G 
then M—M contains the identity in its interior. I t follows then that 
the group [M] generated by M has finite index in G if G is compact 
and hence every element of infinite order in G is dependent on M. 

LEMMA 4. Let G be a compact connected Abelian topological group 
satisfying w(G)=n. Then every closed G« set MQG having positive 
Haar measure contains a maximal linearly independent set L of ele­
ments of infinite order in G and \L\ =2n. 

This lemma follows from Lemma 3, the fact that all maximal 
linearly independent sets of elements of infinite order have the same 
cardinality, and a structure theorem of Hulanicki [S], [6] for com­
pact connected Abelian groups. Lemma 4 allows us to carry out a 
transfinite induction which leads to : 

LEMMA 5. Let G be a compact connected Abelian group satisfying 
w ( G ) = n ^ ^ o . Let {Ma:a<o)mi m = 2n} be a well-ordered sequence of 
closed G$ sets of positive Haar measure in G. Then there exists a well-
ordered set {xa:a<cûm\ of independent elements of infinite order such 
that xa(EMafor each a<o)m. (The Ma's are not necessarily distinct.) 

REMARK. Lemma 5 is true in a more general situation. The same 
induction will work because of Lemma 3 if the Ma are measurable 
with positive measure, m is at most equal to the cardinal of a maximal 
independent set of elements of infinite order, and G is compact Abe­
lian (with no other restrictions). 

LEMMA 6. Let H be a compact connected Abelian group satisfying 
w(H) = n ^ o . Let G=Pt<=THt where each Ht = H and | T\ = 2 2 \ Fix 
the coordinate jSGuT. Then there is a set VC.G of independent elements 
of infinite order satisfying 

(i) V has Haar outer measure one, 
(ii) irp\v is one-to-one. 
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This is proved by using Theorem 5 (i.e., projecting onto Ha the 
elements of (9B) and then using Lemma 5. 

Letting VQ be the free group generated by V, and letting W be the 
free group generated by TTB(V), it is easy to see that TB induces an 
algebraic isomorphism <j> of W onto VG> Furthermore, <j> may be ex­
tended to an algebraic isomorphism of H into G satisfying TTB4>(X) =X 
for all X<EHBJ because H and G are divisible. It follows that <t>{Hs) 
is a group of outer measure one in G. Thus the remainder of the proof 
of Theorem 4 is a repetition of the final part of the proof of Kakutani 
and Kodaira [9] for the circle. 

REMARK. One could use the method of proof outlined above with­
out Theorem 5 to show the existence of an extension of Haar measure 
of character 2 \ 

NOTE. Since this work was completed, Hewitt and Ross [4], have 
generalized and simplified Theorem 4; their theorem implies Theo­
rem 4 for all compact Abelian groups, and uses our Theorem 2, 
Lemma 3, and Lemma 5 with the remark following it. 
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