A NEW CONSTRUCTION FOR HADAMARD MATRICES ${ }^{1}$

BY L. D. BAUMERT AND MARSHALL HALL, JR.
Communicated by J. D. Swift, August 24, 1964

An Hadamard matrix H is a square matrix of ones and minus ones whose row (and hence column) vectors are orthogonal. The order n of an Hadamard matrix is necessarily 1,2 or $4 t$ with $t=1,2,3, \cdots$. It has been conjectured that this condition ($n=1,2$ or $4 t$) also insures the existence of an Hadamard matrix. Constructions have been given for particular values of n and even for various infinite classes of values. While other constructions exist, those given by [1]-[7] exhaust the previously known values of n. This paper gives a new construction which yields, among others, the previously unknown value $n=156$, leaving only two undecided values of $n=4 t \leqq 200$ (these are 116 and 188).

An Hadamard matrix is said to be of the Williamson type if it has the structure imposed by Williamson [6], that is

$$
\boldsymbol{H} \xlongequal{ }\left|\begin{array}{rrrr}
A & B & C & D \\
-B & A & -D & C \\
-C & D & A & -B \\
-D & -C & B & A
\end{array}\right|,
$$

where each of A, B, C, D is a symmetric circulant $t \times t$ matrix. Notice that if a Williamson type matrix exists for $n=4 t$, then an Hadamard matrix (not obviously Williamson) of order $m=12 t$ would exist provided one could find a 12×12 matrix with the following properties. Each row and column must contain precisely three $\pm A$'s, three $\pm B$'s, three $\pm C$'s, three $\pm D$'s and the rows must be formally orthogonal (i.e., A, B, C, D are to be considered as independent quantities). We have discovered such a matrix and display it as Figure 1.

Among the known orders of Williamson type matrices [1], [6], only 52 yields a new value of n by this construction. This gives an Hadamard matrix of order 156 . For definiteness, the first rows of A, B, C, D for one of the Williamson type Hadamard matrices of order 52 are given (here + means +1 and - stands for -1).

[^0]\[

$$
\begin{array}{r}
\\
\left.\begin{array}{rrrrrrrrrrrrrr}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
B & + & + & - & - & + & - & + & + & - & + & - & - & + \\
C & + & + & - & - & + & + & + & + & + & - & - & - \\
D & + & + & - & + & - & + & + & + & + & - & + & - & + \\
A & A & A & B & -B & C & -C & -D & B & C & -D & -D \\
A & -A & B & -A & -B & -D & D & -C & -B & -D & -C & -C \\
A & -B & -A & A & -D & D & -B & B & -C & -D & C & -C \\
B & A & -A & -A & D & D & D & C & C & -B & -B & -C \\
B & -D & D & D & A & A & A & C & -C & B & -C & B \\
B & C & -D & D & A & -A & C & -A & -D & C & B & -B \\
D & -C & B & -B & A & -C & -A & A & B & C & D & -D \\
-C & -D & -C & -D & C & A & -A & -A & -D & B & -B & -B \\
D & -C & -B & -B & -B & C & C & -D & A & A & A & D \\
-D & -B & C & C & C & B & B & -D & A & -A & D & -A \\
C & -B & -C & C & D & -B & -D & -B & A & -D & -A & A \\
-C & -D & -D & C & -C & -B & B & B & D & A & -A & -A
\end{array} \right\rvert\,
\end{array}
$$
\]

Figure 1

References

1. L. Baumert, S. W. Golomb and M. Hall, Jr., Discovery of an Hadamard matrix of order 92, Bull. Amer. Math. Soc. 68 (1962), 237-238.
2. A. Brauer, On a new class of Hadamard determinants, Math. Z. 58 (1953), 219225.
3. K. Goldberg, Hadamard matrices of order cube plus one, Abstract 567-90, Notices Amer. Math. Soc. 7 (1960), 348.
4. R. E. A. C. Paley, On orthogonal matrices, J. Math. and Phys. 12 (1933), 311320.
5. R. G. Stanton and D. A. Sprott, A family of difference sets, Canad. J. Math. 10 (1958), 73-77.
6. J. Williamson, Hadamard's determinant theorem and the sum of four squares, Duke Math. J. 11 (1944), 65-81.
7. -, Note on Hadamard's determinant theorem, Bull. Amer. Math. Soc. 53 (1947), 608-613.

Jet Propulsion Laboratory, California Institute of Technology

[^0]: ${ }^{1}$ This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract number NAS 7-100, sponsored by the National Aeronautics and Space Administration.

