DIRECT FACTORS OF ($A L$)-SPACES ${ }^{1}$

BY DAVID W. DEAN
Communicated by W. Rudin, November 23, 1964

Let E be a closed sublattice of the ($A L$)-space L [1, pp. 107-110]. The purpose of this note is to prove that there is a projection of L onto E having norm one. In particular then E is a direct factor of L. To show this we prove auxiliary theorems that the conjugate space E^{\prime} of E may be "lifted" to L^{\prime} (see Theorem 2 below) and that there is a projection of $E^{\prime \prime}=\left(E^{\prime}\right)^{\prime}$ onto $q(E)$, the natural embedding of E in $E^{\prime \prime}$, whose norm is one.

The space L^{\prime} is isometric and lattice isomorphic to a space $C(H)$ of functions continuous on a compact, extremally disconnected Hausdorff space H [4, Theorems 6.3, 6.9, Corollary 6.2]. Then $L^{\prime \prime}$ is isometric and lattice isomorphic to the space $R(H)$ of regular measures on H [3, p. 265]. If $x^{\prime} \in L^{\prime}, x^{\prime \prime} \in L^{\prime \prime}$ correspond to $f \in C(H), \nu \in R(H)$, then $x^{\prime \prime}\left(x^{\prime}\right)=\int_{H} f d \nu=($ def. $\nu(f))$. If $\nu \in R(H)$ and $\nu(N)=0$ for each nowhere dense set N then ν is a normal measure. The support A_{ν} [2, pp. 2, 8, Proposition 3] of such a measure is both open and closed. Let $N(H)$ denote the subspace of normal measures.

Theorem 1. The representation of $L^{\prime \prime}$ as $R(H)$ maps $q(L)$ onto the space $N(H)$ of normal measures on H. Moreover $\cup\left\{A_{\nu} \mid \nu \in N(H)\right\}$ is dense in H (so that H is hyperstonean [2]).

Proof. Let $\nu \geqq 0$ correspond to $q x$ for x in L. Let N be a closed nowhere dense set. We prove first that $\nu(N)=0$. Let F be the subset of functions f in $C(H)$ for which $\|f\|=1, f \geqq 0, f(h)=1$ if $h \in N$. Then F is directed by \geqq. This directed set then converges at each such ν to $\inf \{\nu(f) \mid f \in F\}$. Thus F converges on the representation of L in $R(H)$. The directed set of x^{\prime} in L^{\prime} corresponding to F then converges pointwise on L to an element y^{\prime} in L^{\prime}. If y^{\prime} corresponds to g in $C(H)$ we have $\nu(g)=\inf \{\nu(f) \mid f \in F\}$ and clearly $g=\inf \{f \in F\}$. Since N is nowhere dense, $g=0$. Thus $\inf \{\nu(f) \mid f \in F\}=0$ so that $\nu(N)=0$. Thus ν is a normal measure.

To prove the second part let A be open and closed in H. For some $\nu>0$ corresponding to $q x, x \in L$, we have $\nu\left(\chi_{A}\right)>0$, where χ_{A} is the characteristic function of A. Thus A meets the support of ν. Hence H is hyperstonean. The theorem follows immediately from a result of Dixmier [2, p. 21, the corollary and its proof].

[^0]Theorem 2. Let i be the inclusion mapping $E \rightarrow L$ and let $i^{\prime}: L^{\prime} \rightarrow E^{\prime}$ denote the conjugate mapping. There is a positive isometry $T: E^{\prime} \rightarrow L^{\prime}$ such that $i^{\prime} T$ is the identity on E^{\prime}. Thus $T x^{\prime}$ is an extension of x^{\prime} to L for each x^{\prime} in E^{\prime}.

Proof. The space E is itself an ($A L$)-space and so it is isometric and lattice isomorphic to a space $N(K)$, with conjugate $C(K)$, and second conjugate $R(K)$, as above. We shall then, suppressing the representation mappings and their inverses, write $N(K) \rightarrow^{i} N(H)$, $C(H) \rightarrow{ }^{i^{\prime}} C(K)$, and seek a positive isometry $T: C(K) \rightarrow C(H)$ with the property that $i^{\prime} T$ is the identity on $C(K)$.

Let χ_{A} denote the characteristic function of the set A. Let \mathbb{Q} be the collection of open and closed subsets of H such that $i^{\prime} \chi_{A}=0$ and let $G=\operatorname{Cl}(\cup\{A \in Q\})$. Then G is open and closed and we now show that $i^{\prime} \chi_{G}=0$. It is enough to show $\nu(G)=0$ if $\nu \geqq 0$ is in $i(N(K))$ since $i(N(K))$ is a sublattice of $N(H)$. Since ν is normal, $\nu(G)=\nu(U\{A \in \mathbb{Q}\})$ as $G-\cup\{A \in Q\}$ is nowhere dense. If $C \subset \cup\{A \in Q\}$ is closed, a finite number of A 's in a cover C, so that $\nu(C)=0$. Since ν is regular, $\nu(\cup\{A \in \mathbb{Q}\})=0$.

Now let e be an extreme point of the unit ball of $C(K)$ (so that e takes only the values 1 and -1). As a functional on $N(K) e$ has an extension to $C(H)$ which is an extreme point of the unit ball of $C(H)$. This follows since the set of norm one extensions of e is a compact convex set in the w^{\prime}-topology of $C(H)$. This set then has an extreme point and such a point is also an extreme point of the unit ball of $C(H)$. Let f agree with such an extension off G and have value 0 on G. Then f is an extension of e to $C(H)$ and takes only the values 1 and -1 off G. Then f has the following properties. (a) $i^{\prime} f^{+}=e^{+}$(so $i^{\prime} f^{-}=e^{-}$), (b) f is unique. To show (a) note that $\chi_{K} \geqq i^{\prime} f^{+} \geqq 0, \chi_{K} \geqq i^{\prime} f^{-} \geqq 0$ and $i^{\prime} f=i^{\prime}\left(f^{+}-f^{-}\right)=e$ (i^{\prime} is a positive norm one mapping). Thus if $e(k)=1$ then $i^{\prime} f^{+}(k)=1$ and if $e(k)=-1$ then $i^{\prime} f^{-}(k)=1$. Hence (a). To show (b) let g be another such f. By (a) $i^{\prime} g^{+}=e^{+}$. Let $A^{\prime}=\{h \mid g(h)=1, f(h)=-1\}$. Then A^{\prime} is open and closed and $g^{+} \geqq \chi_{A^{\prime}} \geqq 0$. Thus $e^{+} \geqq i^{\prime} \chi_{A^{\prime}} \geqq 0$. However $f^{-} \geqq f^{-}-\chi_{A^{\prime}} \geqq 0$ so that $e^{-} \geqq i^{\prime} \chi_{A^{\prime}} \geqq 0$. Thus $i^{\prime} \chi_{A^{\prime}}(k)=0$ if $e^{+}(k)=0$ or $e^{-}(k)=0$, or $i^{\prime} \chi_{A^{\prime}}=0$. It follows that $A^{\prime} \subset G$ so that $A^{\prime}=\varnothing$. Interchanging f and g in this argument yields $f=g$.

From these calculations one has that, given an open and closed set $A \subset K$, there is a unique open and closed set $A^{\prime} \subset H-G$ such that $i^{\prime} \chi_{A^{\prime}}=\chi_{A}$ (let $e=\chi_{A}-\chi_{K-A}$ and select $\chi_{A^{\prime}}=f^{+}$as above). If A and B are open and closed and if $A \cap B=\varnothing$, it is easy to see that $(A \cup B)^{\prime}$ $=A^{\prime} \cup B^{\prime}$ and that $A^{\prime} \cap B^{\prime}=\varnothing$. If $A \cap B \neq \varnothing$ write $(A \cup B)^{\prime}$
$=((A-B) \cup(A \cap B) \cup(B-A))^{\prime}=(A-B)^{\prime} \cup(A \cap B)^{\prime} \cup(B-A)^{\prime}$
$=\left[(A-B)^{\prime} \cup(A \cap B)^{\prime}\right] \cup\left[(A \cap B)^{\prime} \cup(B-A)^{\prime}\right]=A^{\prime} \cup B^{\prime}$. Noting that
$K^{\prime}=H-G$ and that $(K-A)^{\prime}=H-\left(A^{\prime} \cup G\right)$ one gets, by considering complements, that $(A \cap B)^{\prime}=A^{\prime} \cap B^{\prime}$ for all open and closed sets $A, B \subset K$. Thus "'" preserves the ring operations of the ring of open and closed subsets of K.

Now let S be the submanifold of functions in $C(K)$ assuming only finitely many values. Define $T: S \rightarrow C(H)$ by $T\left(\sum_{1}^{n} a_{i} \chi_{A_{i}}\right)$ $=\sum_{1}^{n} a_{i} \chi_{A^{\prime}}$ for $s=\sum_{1}^{n} a_{i} \chi_{A i} \in S$. Since "'" preserves the ring operations it easily follows that T is linear, positive and that $\|T s\|=\|s\|$ for all $s \in S$. Now S is dense in $C(K)$ as follows. If $\epsilon>0$ the set $\{k \mid-\|f\|+n \epsilon<f(k)<-\|f\|+(n+1) \epsilon\}, n=0,1,2, \cdots$, has open and closed closure A_{n}. The set B_{n} of k such that $f(k)=-\|f\|+n \epsilon$ and $k \notin A_{n-1} \cup A_{n}$ is also open and closed. At most a finite number of A_{n}, B_{n} are nonempty so $\left\|\sum_{1}^{M}(-\|f\|+n \epsilon) \chi_{A_{n}}+\sum_{1}^{M}(-\|f\|+n \epsilon) \chi_{B_{n}}-f\right\|$ $\leqq \epsilon$ if M is large. Thus T has an extension to all of $C(K)$ (also denoted by T) which is positive and an isometry.

Since $\left(i^{\prime} T \chi_{A}\right)(\nu)=T \chi_{A}(i \nu)=\chi_{A^{\prime}}(i \nu)=i^{\prime} \chi_{A^{\prime}}(\nu)=\chi_{A}(\nu)$ for all ν in $N(K)$ and all open and closed sets $A \subset K$ one has that $i^{\prime} T$ is the identity on $C(K)$. Q.E.D.

Let q be the natural embedding of E in $E^{\prime \prime}$ or of L in $L^{\prime \prime}$. Thus $q \nu(f)=f(\nu)$ for all f in E^{\prime}, ν in $E\left(\right.$ or f in L^{\prime}, ν in L).

Theorem 3. There is a norm one projection from $E^{\prime \prime}$ onto $q(E)$.
Suppose for the moment this theorem has been proved. Let T be the isometry $E^{\prime} \rightarrow L^{\prime}$ promised in Theorem 2. The inclusion mapping i is suppressed in the following argument. Then $T^{\prime}: L^{\prime \prime} \rightarrow E^{\prime \prime}$ and for x in E one has that $T^{\prime} q x=q x$ since $T^{\prime} q x\left(x^{\prime}\right)=q x\left(T x^{\prime}\right)=T x^{\prime}(x)=x^{\prime}(x)$ $=q x\left(x^{\prime}\right)$ for every x^{\prime} in E^{\prime}. Thus $T^{\prime} q(L) \supset q(E)$ in $E^{\prime \prime}$. By Theorem 3 there is a projection P of $E^{\prime \prime}$ onto $q(E)$ such that $\|P\|=1$. Then P restricted to $T^{\prime} q(L)$ is a projection of $T^{\prime} q(L)$ onto $q(E)$. Finally $Q=q^{-1} P T^{\prime} q$ is a projection of L onto E having norm one since clearly $\|Q\|=1, Q: L \rightarrow E$, and Q is the identity on E. Thus one has

Theorem 4. If E is a closed sublattice of the ($A L$)-space L there is a projection Q of L onto E such that $\|Q\|=1$.

Proof of Theorem 3. Identify $E^{\prime \prime}$ with the space $R(K)$ so that $q(E)$ is identified with $N(K)$. It is sufficient to show there is a norm one projection of $R(K)$ onto $N(K)$. Let \mathfrak{N} be the set of closed nowhere dense subsets of K. Let $\nu \geqq 0$ be in $R(K)$. Define ν_{1} on an open and closed set A by $\nu_{1}(A)=\sup \{\nu(N) \mid N \subset A, N \in \mathfrak{N}\}$. Then ν_{1} is finitely additive on the ring of open and closed sets. If $\sum_{1}^{n} a_{i} \chi_{A_{i}} \in S$, then
$\nu_{1}\left(\sum_{1}^{n} a_{i} \chi_{A_{i}}\right)=\sum_{1}^{n} a_{i} \nu\left(A_{i}\right)$ defines a continuous linear functional on S whose extension to $C(K)$ yields an element $\nu_{2} \leqq \nu$ of $R(K)$. We will show that $\nu(N)=\nu_{2}(N)$ for all $N \in \mathfrak{I}$. Choose an open set $B \supset N$ such that $\nu_{2}(B-N)<\epsilon$. Choose f in $C(H)$ such that $\|f\|=1, f(k)=1$ if $k \in K$ $-B$ and $f(k)=0$ if $k \in N . A=\mathrm{Cl}\left(\left\{k \left\lvert\, f(k)<\frac{1}{2}\right.\right\}\right)$ is an open and closed set for which $\nu_{2}(A-N)<\epsilon$ and $N \subset A$. Then $\nu_{2}(N) \leqq \nu(N) \leqq \nu_{2}(A)$ $\leqq \nu_{2}(N)+\epsilon$ so that $\nu_{2}(N)=\nu(N)$. Let $\nu_{3}=\nu-\nu_{2}$. Clearly $0 \leqq \nu_{3} \leqq \nu$ and $\nu_{3} \in N(K)$. If we define $P(\nu)=\nu_{3}$ for $\nu \geqq 0$ then $P(a \nu)=a P(\nu)$ if $a \geqq 0$ and $P(\nu+\mu)=P(\nu)+P(\mu), \nu, \mu \geqq 0$. Now any ν can be written $\nu=\mu-\lambda$ for some $\lambda, \mu \geqq 0$, and we define $P(\nu)=P(\mu)-P(\lambda)$. If $\nu=\mu_{1}-\lambda_{1}=\mu_{2}-\lambda_{2}$ in this way then $\mu_{1}+\lambda_{2}=\mu_{2}+\lambda_{1}$ so $P\left(\mu_{1}\right)+P\left(\lambda_{2}\right)$ $=P\left(\mu_{2}\right)+P\left(\lambda_{1}\right)$ or $P\left(\mu_{1}\right)-P\left(\lambda_{1}\right)=P\left(\mu_{2}\right)-P\left(\lambda_{2}\right)$ and thus P is well defined. Moreover P is clearly linear and $\|P\|=1$. Q.E.D.

Bibliography

1. M. M. Day, Normed linear spaces, New York, 1962.
2. J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2 (1951), 151-182.
3. N. Dunford and J. T. Schwartz, Linear operators, Vol. 1, Interscience, New York, 1958.
4. D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc. 69 (1950), 89-108.
5. A. Ionescu Tulcea and C. Ionescu Tulcea, On the lifting property (1), J. Math. Anal. Appl. 3 (1961), 537-546.

Ohio State University

[^0]: ${ }^{1}$ This research was partially supported by NSF Grant GP1913.

