
THE COHOMOLOGY OF RESTRICTED LIE ALGEBRAS 
AND OF HOPF ALGEBRAS12 

BY J. PETER MAY 

Communicated by W. S. Massey, November 6, 1964 

Introduction. In theory, the bar construction suffices to calculate 
the homology groups of an augmented algebra. In practice, the bar 
construction is generally too large (has too many generators) to allow 
computation of higher-dimensional homology groups. In this paper, 
we outline a procedure which simplifies the calculation of the ho­
mology and cohomology of Hopf algebras. 

Let i b e a (graded) Hopf algebra over a field K of characteristic p. 
Filter A by FqA =A\iq^0 and FqA = (I(A))~* if g < 0 , where 1(A) 
is the augmentation ideal. The associated graded algebra E°A, E°a>rA 
= (FqA/Fq-iA)q+r, is clearly a primitively generated (bigraded) Hopf 
algebra over K. By a theorem due to Milnor and Moore [4], this im­
plies that E°A is isomorphic to the universal enveloping algebra of 
its restricted Lie algebra of primitive elements if p>0, and to the 
universal enveloping algebra of its Lie algebra of primitive elements if 
p = 0. 

Our procedure is to calculate H*(A) = ExtA(K, K) by means of a 
spectral sequence passing from H*(E°A) to H*(A). The fundamental 
result is the construction of a reasonably small canonical F(L)-free 
resolution of the ground field, where V(L) is the universal enveloping 
algebra of a restricted Lie algebra L. We also obtain such a Z7(L)-
free resolution, where U(L) is the universal enveloping algebra of a 
Lie algebra L. These resolutions allow computation of the £ 2 term 
of the cited spectral sequence. 

The author would like to express his deep gratitude to J. C. Moore, 
who suggested this approach to the problem of calculating the co­
homology of Hopf algebras. 

STATEMENT OF RESULTS. We first state the existence theorem for 
the required spectral sequence. Let A be a filtered augmented graded 
algebra over a field K. Let M be a left A -module and filter M by 
FqM=(FqA)M. Then E°M is a left EM-module. Suppose that for 
N = A and N=Mwe have N = lim inv N/FqN and N is of finite type as 

1 During the preparation of this paper, the author was partially supported by 
National Science Foundation grant number NSF-GP-1853. 

2 The work announced here is contained in the author's doctoral thesis, submitted 
to Princeton University. 
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a it-module. Let M* denote Hom^ikf, K), the right ^4-module dual 
to M. Under these hypotheses, we have 

THEOREM 1. There exists a spectral sequence {ErM*\ satisfying 
(i) E2M* = ExtEoA(K, (E°M)*). 
(ii) Each ErM* is a right differential ErK-moduley the module struc­

ture on E%M* being given by the Yoneda product, 
(iii) E^M* is isomorphic to E°ExtA(K, M*) (with respect to a suita­

ble filtration) as a right E°H*(A)-module. 

The spectral sequence {ErM*} is obtained as the dual of a spectral 
sequence [ETM) passing from T o r ^ ( i t , E°M) to E°TorA(K, M). 
The latter spectral sequence is constructed by filtering B(A)®A M 
in such a manner that E°(B(A)®AM)^B(E°A)®EoA E°M as a i t -
module, rfo = 01_and E\B(A) ®AM)^B(E°A) ®EoA E°M as a complex. 
(Here B(A) —B(A) ®A is the right bar construction.) The condition 
iV —lim inv N/FqN, N=A and N=M, is needed to ensure the con­
vergence of the spectral sequences (see [ l]) . 

In order to calculate the differentials in the homology spectral 
sequence, we must know representative cycles in B(E°A)®EoA E°M 
for elements of TorEA(K, E°M). However, we envision calculation 
of TorEA(K, E°M) by means of an E°A-iree resolution of K other 
than B(E°A). The following proposition will give an embedding of 
this resolution in B(E°A). 

PROPOSITION 2. Let A be an augmented algebra over a field K. Let 
X= Y®A be an A-free complex over K satisfying 

(i) X0 = A and XQ-^K is the augmentation of K, and 
(ii) no element of Y is a cycle of X. 

Then there exists a unique monomorphism ƒ: X—>B(A) of A-complexes 
over K such that f0: Xo—>Bo(A) is the identity map of A andf( Y)QB(A). 
ƒ is defined by the inductive formula f (y) = Sfd(y), yEiY, where S is the 
contracting homotopy of B(A). 

It remains to define the promised F(L)-free resolution of the 
ground field, where V(L) is the universal enveloping algebra of a 
restricted Lie algebra L. 

We suppose first that L is a Lie algebra over a field K and construct 
a U{L) -free resolution of K. Let L+ , respectively Ir, denote the sub-
space of L of elements of even degree, respectively odd degree, and 
adopt the convention that L+ = L and Ir is void if the characteristic 
of K is two. Consider L as bigraded with bidegree ("homological de­
gree") zero, and let sL denote a copy of the it-space L in which all 
elements have bidegree one. As a it-space, our Z7(L)-free resolution 
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will be Y(L)=T(sLr)®E(sL+)®U(L), where T denotes a divided 
polynomial algebra and E an exterior algebra. Let / = 7 n ( # i ) • • • 
Yrm(*m) and g = (yi, • • • , yn) denote typical elements of T(sL~) and 
E(sL+). Let fi result from ƒ by replacing r* by r» — 1 , and let fiti 

= (ƒ,),•, i ^j. Let gi result from g by omission of y», and let g»,/= (gy)», 
i < j . With this notation, we have 

THEOREM 3. Le/ L be a Lie algebra over a field K. Give Y(L) a 
differential by 

d(fgu) - d(jg)u, u E U(L), 

and 

n m / 1 \ 
d(fg) = Z (-l)wfg<y* + (-1)" E (//««y - -fuiibi, *i\)) 

+ (- i )"+ 1( Z (-D«-ygw<[y<yy]>+ E ƒ<•*<[*!,*/]>) 

m n 

+ ZE(-i)ym([«i,yi])ft. 

Then Y(L) is a U{L)-free resolution of K. 

In the case where L is a restricted Lie algebra, we wish to enlarge 
the F(L)-free complex W(L) =T(sL+)®E(sL-)® V(L) to obtain a 
resolution. In order to do this, the following corollary is needed. 

COROLLARY 4. Give Y(L) a structure of K-algebra by requiring the 
product to agree with the natural one on T(sL+) ®E(sLr) and on U(L) 
and to satisfy the relations 

(0 yi<y2> - (y*)yi = <b>i, yj>, y\ G L+, y2 G £ + , 

(ii) x(y) + (y)x = 7i([y, %]), y G L+, x G Zr, 

(iii) 3>7r(#) - 7r(x)y = 7r-i(«)7i(bi *])> ^ G Z,+, * G L", 

(ÎV) XXyr(x2) - 7r(^2)^l = — 7r-l(*2)([#l, #2]), «1 G IT, X2 G £ " . 

r/^ew ^(ZO w a differential K-algebra. 

Now we suppose that the characteristic oî K is p>0 and that L 
is a restricted Lie algebra with restriction (pih power) £: L+—»L+. 
TF(L) is a F(L)-free complex and a differential X-algebra, but is not 
exact since (y)yp-1 — (%(y)) is a nonbounding cycle, yQL+. Let sVL* 
denote a copy of L + with the degree of each element multiplied by p 
and with each element having bidegree two. Let {yi}iei be a basis 
for L + indexed on a totally ordered set Z. Identify T(s2irL+) as a K-
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space with ® izi T(yt), yi = s27ryif where r(5\) precedes T(yj) in the 
tensor product if i<j. As a i£-space, our F(L)-free resolution of K 
will be X(L) =r(527rL+) 0 W(L), and we will have d{yx{y%)) = (yW1 

— (£(yi)). Obviously L + is a subrestricted Lie algebra of L and there­
fore W{L+) is defined. Let Q(yi) be the truncated polynomial algebra 
P(yù/(yi) and identify V(L+) as a i£-space with ® iei Q(yù, where 
Q(yù precedes Q{y}) if i <j (this is possible by the Poincaré-Birkhoff-
Witt theorem). Then X{L) may be given a structure of left W(L+)-
module by means of the natural left W(L+)-module structure on 
W(L) and by 

(<*) (yihriyi) = yr(3i)(yj), 

(b) y/Vr(J<) - 7r(ft)y/ + Tr-i(^) ] £ (-l)*<y*> (ad yi)h(yj))yi , 

(ad y»)j/ = [yi, yj], and, inductively 

(c) yzyr(yi) = 3>0&Yr(:yt)), where ^z is an element of the basis for V(L+) 

defined above 

With these definitions and notations, we can state 

THEOREM 5. Let Lbe a restricted Lie algebra over afield K. Define a 
differential on X(L) by 

(i) dfrrW) - yr-i&HtyuyV1 - <!(*)», 
n 

(Ü) d(yri(yh) • • • 7r t t(?ü) = Z 7n(?«i) ' • • dfaM) • • • 7rn(5Ü> 
y-i 

wfer£ ik < ii if k < I, and 

(iii) d(gw) = <Z(g)ze; + gd(w), g G T(s*irL+), w G W(L). 

Here the right sides of (ii) and (iii) are to be determined as elements 
of the V{L)-module X{L) by means of the left W(L+)-module struc­
ture of X(L) and the algebra structure of W(L). Then X{L) is a V(L)-
free resolution of K, 

REMARKS. The difficult part of the theorem is the proof that X(L) 
is actually a complex. The stated left W(L+) -module structure is re­
quired to prove this. We make no attempt to give an explicit for­
mula for the differential on X(L), as its form would be quite com­
plicated in the general case. The differential depends on the choice 
of the ordering of the set I : if we interchange the order of two basis 
elements, the formula for the differential is changed. 
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Finally, let Z(L)=eui T(y%)®W(L)CX(L) if p>2 and let Z(L) 
= X(L) if p = 2. We define a diagonal map in Z(L). 

THEOREM 6. Define D: Z(L)->Z(L) ®Z(L) by 

(i) D is a morphism of V(L)-modules, 

(ii) D((y)) = (j) ® 1 + 1 <g> <y>, 3; G L+, 

DM*)) = £ 7*(#) ® 7i(*), * G £~, 

D(7r(y)) = L 7<0>) ® 7,(50 

+ 2 E (-l)*T«(5')<y>y»-1®Yi(50<y>3 -̂1-*, 

y G {y<}<€T, 

(iii) D(ab) =D(a)D(b), where the product on the right is to be deter­
mined by use of the algebra structure of W(L) and, if p = 2, by 
the left W(L)-module structure of ZÇL). 

Then Dd = (d®l + l®d) on Z(L). 

REMARKS. In the case p> 2, formula (iii) would not give a structure 
of differential co-algebra on all of X(L), but D may be extended to 
X(L) by the use of Proposition 2 and the diagonal map of B(V(L)) 
(even though DfX(L)(tfX(L)®fX(L)). D is co-associative only if 
p = 2, although the resulting product on H*(V(L)) is always associa­
tive. 

Details and proofs of these results will appear elsewhere. 
APPENDIX. We note here a curious corollary of Theorem 4. Let L 

be an ungraded finite-dimensional restricted Lie algebra over a field 
K. Then we have: 

COROLLARY 6. E x t ^ C K , K) = 0 implies that L is Abelian and the 
pth power mapping L—>LP is one-to-one. 

PROOF. Consider the resolution X(L) of Theorem 4. Exty(L)(K, K) 
= 0 implies TorJ ( I )(i£, K) = 0, and therefore there are no nonbound-
ing two-cycles in X(L) =X(L) ®V(L)K. N O 7 I ( # ) is a summand of a 
boundary and dyi(x) = — (£(#)) in X(L). Thus £(#)^0 and L-+Lp 

is one-to-one. Further, if ][X(£(tft))+ S W b v » ty])^» **€:•£» IjGK, 
and the #»• are linearly independent, then X^*7i(#*') + S^'ÖV» z/) *s a 

nonbounding cycle unless each fet=0. In particular, taking each Z/ = 0, 
if {%i} is a basis for L, then so is {£(#*) }• But this implies LC\[Lt L] 
= {0}, hence L is Abelian. 

REMARKS. By results of Hochschild [2] and Jacobson [3], [L, L] 
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= 0 and KLP = L if and only if every finite-dimensional L-module is 
completely reducible. The latter implies that ExtV(i)(Af, iV)=0 for 
all F(L)-modules M and Nf finite dimensional or not, and therefore 
all F(L)-modules are projective and V(L) has global dimension zero, 
i.e., Ext7(L)(M, N) = 0 for all n> 1 and for all M and N. 
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In this paper, we state some of the results obtained by application 
of the methods of [4] to the study of the cohomology of the Steenrod 
algebra A. In brief, our results are a complete determination of 
H8'l{A) for t — s â 42 in the mod 2 case, and for t — s 
g:2(p-l)(2p2+p+2)-4: in the mod p case, p>2. Due to the exist­
ence of the Adams spectral sequence [ l ] , these results give informa­
tion about the stable homotopy groups of spheres. 

We recall that the mod p Adams spectral sequence {Er} (for the 
sphere) has differentials 5r: E

s
r'

i—:>E?r
+r,t+r~1 and satisfies the proper­

ties: 

(1) E?S±H'-*{A) as a Zp-algebra. 
(2) Each Er is a differential Zp-algebra. 
(3) {£*» I / — s — k} provides a composition series for 7rk(S; p) (relative 

to a suitable filtration); here irk(S, p) denotes the stable homot­
opy group Wk(S) modulo the subgroup of elements whose order 
is finite and prime to p. 
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