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In 1957 A. N. Kolmogorov [ l] and V. I. Arnol'd [2] obtained the 
following result (answering Hubert 's conjecture in the negative) : 

THEOREM. For every integer n*z2 there exist continuous real f unctions 
$pq,for p = l, 2, • • • , n and q = l, 2, • • • , 2w+l , defined on the unit 
interval E1 = [0, 1 ] , such that every continuous real function f, defined on 
the n-dimensional unit cube En, is representable in the form 

2n+l r- n "I 

«=-i L p- i J 

where the functions x« are real and continuous. 

The proof of the theorem relies on two properties of El, namely, E1 

is compact and of dimension 1. (By dimension we shall always mean 
covering dimension.) This paper generalizes the work of Kolmogorov 
and Arnol'd to obtain the following result: 

THEOREM 2. For p = l9 2, • • • , m let Xp be a compact metric space 
of finite dimension dp, and let n = 2^J-i ^v There exist continuous func
tions \[/pq: Xp->[0, 1], for p = l, • • • , m and g = l, 2, • • • , 2n+l, 
such that every continuous real function f defined on YL™-i Xp ^s repre
sentable in the form 

2n+l r- m "1 

fl=i L P=i J 

where the functions x« are real and continuous. 

The proof of Theorem 2 makes use of the following new character
ization of dimension of metric spaces which is of interest in itself. 

THEOREM 1. A metric space X is of dimension ^n if and only if for 
each open cover G of X and each integer k^n+1 there exist k discrete 
families of open sets 1li, • • • , 11* such that the union of any n+1 of 
the 11,- is a cover of X which refines 6. 

1 This research was partially supported by a National Science Foundation Fellow» 
ship. 
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By a discrete family of sets we mean a family such that each point 
has a neighborhood which meets at most one member of the family. 
For dimension 0 Theorem 1 reduces to the following result, which is 
well known : A metric space X is of dimension g 0 if and only if each 
open cover of X may be refined by a discrete family of open sets. 

This note presents brief proofs of Theorems 1 and 2. 
PROOF OF THEOREM 1. I t suffices to show that if X is of dimension 

Sn, then for each open cover 6 of X and each integer k^n+1 there 
exist k discrete families of open sets Oli, • • • , 01* which refine 6, any 
n + 1 of which cover X. We prove this by induction on k. Let X be of 
dimension = w and let (5 = {Ca) aÇzl} be an open cover of X. By 
passing to a refinement if necessary, we may suppose that <B is locally 
finite. We may write I a s l = U?j"i Xi where each Xi is a subspace 
of dimension 0. 

Let e t = {Car\Xi\ aÇzl}* G< is an X^-open cover of Xi. By the 
case of dimension 0 there exists for each i a disjoint family Vi of 
Xropen sets which covers X» and refines 6». 

Let I be well ordered by < . For each a £ J and i — 1 , • • • , n + 1 , let 
W^ = U { 7 e v < : VCCar\Xiand for each p<a, F ^ C ^ n X ; } , and let 
*Wf= { Wl

a\ «G-f }• Distinct members of Wf- are disjoint. 
L e t Z ^ = { x G C a : d ( x , ^ ) < ^ ( x , U ^ < a T ^ ) } a n d l e t Z , = { 2 l : a G / } . 

W*a CZ?a C Ca for each i and a. Each Z* is a locally finite family of dis
joint open sets of X which refines G and covers Xt-. I t follows that 
UJ^i1 %i covers X. 

As before, there exist closed sets D^CZ^ such tha t {D*a: a £ I ; 
i = l , • • • , w + l } covers X. Choose open sets Ua such that D^CZUi 
CCl(U^) CZL, and let 01,= { E#: aGl}. Each 11* is discrete and re
fines 6, and «Hi, • • • , "Hn+i cover X. 

Suppose now that k>n + l and that Oli, • • • , OU-i are discrete 
families of open sets which refine G, any n + 1 of which cover X. We 
will construct a subset 4̂ of X and a discrete family «11*. of open sets 
which refines G, such that any n of the families Hi, • • • f OU-i cover 
X—^4 and OU covers A. 

Let 2t= {7~(Yi, • • • > 7 » ) : 1 ^ 7 i < 7 2 < * • • <7n = fe-l}. For 
7G2Ï, let Ay^di^ (X—UUy.)i and -4«U7est-4Y- Each Ay is closed 
and AyHiAs = 0 for 75^8. Hence there exist open sets By such that 
AyCBy and Cl(5 7 )nCl(B a ) = 0 for 7 ^ 8 . For 7G2I, there exists a 
positive integer j 7 ^ f e — 1 such that j 7 ( £ {7;: * = 1, 2, • • • , n}. %y 

covers Ay. Let 01*= { TJC\By:yÇ:% and f/GOl^}. OU is a discrete 
family of open sets which covers A and refines G. Thus the proof of 
Theorem 1 is complete. 

PROOF OF THEOREM 2. For each integer p, p = l, • • • , m, each 
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integer q, g = l , 2, • • • , 2 w + l , and each integer k, k*=lf 2, • • • , 
there exist positive real numbers 7^ and eky distinct positive prime 
numbers f̂ , discrete families Sf of open sets of Xp, and continuous 
functions/f: X*-*[0, 1] such tha t : 

(1) limjfĉ oo 7^ = 1 ^ ^ 0 0 6 ^ = 0 ; 
(2) each member of S™ is of diameter ^yk and for each fixed p 

and k any dp+l of the families S£ff cover X*\ 

(3) m € * < l / n ? - i # for each 2 = 1. 2, • • • , 2 » + l ; 
(4) ƒ** is constant on each member of $la, the constant being an 

integral multiple of l / r ? , and takes different values on distinct mem
bers of §ifl; 

(5) For each j<k and xGX', ffa(x) èfia(x) gf»(x) +e~ek. 
The 7*;, €k, if1, S?, and jp are defined inductively on k. 
Let X = II^Li Xp. X is a metric space with metric 

m 

d((xU • • • , Xm), (yi, • • • , ym)) = S <*(**» ?*)• 

For each q and * let 3j = { Ü ? - i C P : CP&1* for each ^ } . Each 3j is a 
discrete family of open sets of X, and each member of 3* is of diam
eter = W7fc. For each fe any n + 1 of the families 3f cover X. 

Let \f/pq{x) ~limk+aojV(x) for #£-X"*\ For each & and each xÇ:Xp, 
jT(x) ^pq{x) â jfT (*)+€*. Thus ^*s being the uniform limit of the 
jf1, is continuous. 

Let <t>q(xu • • • , xm) = 2 ? - I ^ P * ( * P ) for (xu • • • , ^ ) G I . Let 
°UÎ= {<Êg(0: C G 3 | } . If C = I I ? - i 0 6 3 Î , t h e n * f l (Ç) i s contained in 
the interval [ Z ^ ^ O ) , S L I / T ( C p ) + m e k \ By condition (3) 
these closed intervals are disjoint for each fixed q and k. Hence each 
<U| is discrete. 

Let ƒ be a continuous real-valued function on X. For each integer 
r = 0 and q = 1, • • • , 2n+l there exists a positive integer kr and con
tinuous functions x?: i^-^i^ OR denotes the real line, fe0 = 1 and Xo = 0 
for each 2) such that if ƒ,(*) = Y,T-T Z X o X?(<H*0) for ^ G I and if 
Mr = supaJ€y I (ƒ—/ r)(*)| , then: 

(6) & r + i>£ r ; 
(7) if rf(fl>6)<fffT*r+i,then |Cf - / r ) ( a ) -Cf - / r ) (&) | <(2n+2)-*Mr; 
(8) Xr+i is constant on each member of "U^+j, its value on <t>q(C) 

f o r C G 3jtr+1 being (w+1) 1(/— fr)(y) for some arbitrarily chosen ele
ment y oî C; 

(9) |x?+i(0)| ^ O i + l î - W r for each aER. 
The &r and x? a r e defined inductively on r. I t is easily deduced 

from (7) and (8) that 
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(10) | ( w + l ) ^ ( / - / f ) ( x ) - x ? + i ( 0 ^ ) ) | < ( w + l ) - 1 ( 2 n + 2 ) - W r for 

*eu{r:re3U}. 
For each XÇLX there are at least w+1 distinct values of q such that 

that x&U { T: TE3lr+1}. Adding (10) for n+1 values of q and (9) for 
the other n values of q yields 

l<y-/r+o(*)l = 
2n+l 

(f-frXx)-l,x;+i(<t>\x)) 
2« + l 

< Mr. 
In + 2 

Then M r+i<(2»+l)(2»+2)-1Jlf r i so ilf r<((2»+l)(2»+2)-1) rlfo for 
each r and lim,-.» Afr = 0. Hence f(x) = limr^„fr(x) for all tfE-X". More
over, by condition (9) the functions X)"-o X» converge uniformly for 
each q to a continuous function x": R—*R and 

2n+l r 2n+l 

ƒ(*) = lim fr(x) = lim £ £*!( / (*)) = E x V ( * ) ) . 

This completes the proof of Theorem 2. 
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