DIMENSION OF METRIC SPACES AND HILBERT'S PROBLEM 13¹

BY PHILLIP A. OSTRAND

Communicated by R. P. Boas, March 10, 1965

In 1957 A. N. Kolmogorov [1] and V. I. Arnol'd [2] obtained the following result (answering Hilbert's conjecture in the negative):

THEOREM. For every integer $n \ge 2$ there exist continuous real functions Ψ^{pq} , for $p=1, 2, \cdots, n$ and $q=1, 2, \cdots, 2n+1$, defined on the unit interval $E^1 = [0, 1]$, such that every continuous real function f, defined on the n-dimensional unit cube E^n , is representable in the form

$$f(x_1, \cdots, x_n) = \sum_{q=1}^{2n+1} \chi_q \bigg[\sum_{p=1}^n \psi^{pq}(x_p) \bigg],$$

where the functions χ_q are real and continuous.

The proof of the theorem relies on two properties of E^1 , namely, E^1 is compact and of dimension 1. (By dimension we shall always mean covering dimension.) This paper generalizes the work of Kolmogorov and Arnol'd to obtain the following result:

THEOREM 2. For $p = 1, 2, \dots, m$ let X^p be a compact metric space of finite dimension dp, and let $n = \sum_{p=1}^{n} d_p$. There exist continuous functions $\psi^{pq}: X^p \to [0, 1]$, for $p = 1, \dots, m$ and $q = 1, 2, \dots, 2n+1$, such that every continuous real function f defined on $\prod_{p=1}^{m} X^p$ is representable in the form

$$f(x_1, \cdots, x_m) = \sum_{q=1}^{2n+1} \chi_q \bigg[\sum_{p=1}^m \psi^{pq}(x_p) \bigg],$$

where the functions χ_q are real and continuous.

The proof of Theorem 2 makes use of the following new characterization of dimension of metric spaces which is of interest in itself.

THEOREM 1. A metric space X is of dimension $\leq n$ if and only if for each open cover C of X and each integer $k \geq n+1$ there exist k discrete families of open sets U_1, \dots, U_k such that the union of any n+1 of the U_i is a cover of X which refines C.

¹ This research was partially supported by a National Science Foundation Fellowship.

By a discrete family of sets we mean a family such that each point has a neighborhood which meets at most one member of the family. For dimension 0 Theorem 1 reduces to the following result, which is well known: A metric space X is of dimension ≤ 0 if and only if each open cover of X may be refined by a discrete family of open sets.

This note presents brief proofs of Theorems 1 and 2.

PROOF OF THEOREM 1. It suffices to show that if X is of dimension $\leq n$, then for each open cover C of X and each integer $k \geq n+1$ there exist k discrete families of open sets $\mathfrak{U}_1, \dots, \mathfrak{U}_k$ which refine C, any n+1 of which cover X. We prove this by induction on k. Let X be of dimension $\leq n$ and let $\mathbb{C} = \{C_{\alpha}; \alpha \in I\}$ be an open cover of X. By passing to a refinement if necessary, we may suppose that C is locally finite. We may write X as $X = \bigcup_{i=1}^{n+1} X_i$ where each X_i is a subspace of dimension 0.

Let $\mathfrak{C}_i = \{C_{\alpha} \cap X_i : \alpha \in I\}$. \mathfrak{C}_i is an X_i -open cover of X_i . By the case of dimension 0 there exists for each *i* a disjoint family \mathfrak{V}_i of X_i -open sets which covers X_i and refines \mathfrak{C}_i .

Let *I* be well ordered by <. For each $\alpha \in I$ and $i=1, \dots, n+1$, let $W_{\alpha}^{i} = \bigcup \{ V \in \mathcal{V}_{i} : V \subset C_{\alpha} \cap X_{i} \text{ and for each } \beta < \alpha, V \oplus C_{\beta} \cap X_{i} \}$, and let $\mathfrak{W}_{i} = \{ W_{\alpha}^{i} : \alpha \in I \}$. Distinct members of \mathfrak{W}_{i} are disjoint.

Let $Z_{\alpha}^{i} = \{x \in C_{\alpha} : d(x, W_{\alpha}^{i}) < d(x, \bigcup_{\beta < \alpha} W_{\beta}^{i})\}$ and let $\mathbb{Z}_{i} = \{Z_{\alpha}^{i} : \alpha \in I\}$. $W_{\alpha}^{i} \subset Z_{\alpha}^{i} \subset C_{\alpha}$ for each *i* and α . Each \mathbb{Z}_{i} is a locally finite family of disjoint open sets of X which refines \mathfrak{C} and covers X_{i} . It follows that $\bigcup_{i=1}^{n+1} \mathbb{Z}_{i}$ covers X.

As before, there exist closed sets $D_{\alpha}^{i} \subset Z_{\alpha}^{i}$ such that $\{D_{\alpha}^{i}: \alpha \in I; i=1, \cdots, n+1\}$ covers X. Choose open sets U_{α}^{i} such that $D_{\alpha}^{i} \subset U_{\alpha}^{i} \subset Cl(U_{\alpha}^{i}) \subset Z_{\alpha}^{i}$, and let $\mathfrak{U}_{i} = \{U_{\alpha}^{i}: \alpha \in I\}$. Each \mathfrak{U}_{i} is discrete and refines \mathfrak{C} , and $\mathfrak{U}_{1}, \cdots, \mathfrak{U}_{n+1}$ cover X.

Suppose now that k > n+1 and that $\mathfrak{U}_1, \cdots, \mathfrak{U}_{k-1}$ are discrete families of open sets which refine \mathfrak{C} , any n+1 of which cover X. We will construct a subset A of X and a discrete family \mathfrak{U}_k of open sets which refines \mathfrak{C} , such that any n of the families $\mathfrak{U}_1, \cdots, \mathfrak{U}_{k-1}$ cover X-A and \mathfrak{U}_k covers A.

Let $\mathfrak{A} = \{ \gamma = (\gamma_1, \dots, \gamma_n) : 1 \leq \gamma_1 < \gamma_2 < \dots < \gamma_n \leq k-1 \}$. For $\gamma \in \mathfrak{A}$, let $A_{\gamma} = \bigcap_{i=1}^n (X - \bigcup \mathfrak{U}_{\gamma_i})$, and $A = \bigcup_{\gamma \in \mathfrak{A}} A_{\gamma}$. Each A_{γ} is closed and $A_{\gamma} \cap A_{\delta} = \emptyset$ for $\gamma \neq \delta$. Hence there exist open sets B_{γ} such that $A_{\gamma} \subset B_{\gamma}$ and $\operatorname{Cl}(B_{\gamma}) \cap \operatorname{Cl}(B_{\delta}) = \emptyset$ for $\gamma \neq \delta$. For $\gamma \in \mathfrak{A}$, there exists a positive integer $j_{\gamma} \leq k-1$ such that $j_{\gamma} \notin \{\gamma_i : i=1, 2, \dots, n\}$. $\mathfrak{U}_{j_{\gamma}}$ covers A_{γ} . Let $\mathfrak{U}_k = \{ U \cap B_{\gamma} : \gamma \in \mathfrak{A} \text{ and } U \in \mathfrak{U}_{j_{\gamma}} \}$. \mathfrak{U}_k is a discrete family of open sets which covers A and refines \mathfrak{C} . Thus the proof of Theorem 1 is complete.

PROOF OF THEOREM 2. For each integer $p, p=1, \dots, m$, each

620

integer $q, q=1, 2, \dots, 2n+1$, and each integer $k, k=1, 2, \dots$, there exist positive real numbers γ_k and ϵ_k , distinct positive prime numbers r_k^{pq} , discrete families \mathbb{S}_k^{pq} of open sets of X^p , and continuous functions $f_k^{pq}: X^p \to [0, 1]$ such that:

(1) $\lim_{k\to\infty} \gamma_k = \lim_{k\to\infty} \epsilon_k = 0;$

(2) each member of S_k^{pq} is of diameter $\leq \gamma_k$ and for each fixed p and k any d_p+1 of the families S_k^{pq} cover X^p ;

(3) $m\epsilon_k < 1/\prod_{p=1}^m r_k^{pq}$ for each $q=1, 2, \cdots, 2n+1$;

(4) f_k^{pq} is constant on each member of S_k^{pq} , the constant being an integral multiple of $1/r_k^{pq}$, and takes different values on distinct members of S_k^{pq} ;

(5) For each j < k and $x \in X^p$, $f_j^{pq}(x) \leq f_k^{pq}(x) \leq f_j^{pq}(x) + \epsilon_j - \epsilon_k$. The γ_k , ϵ_k , r_k^{pq} , S_k^{pq} , and f_k^{pq} are defined inductively on k. Let $X = \prod_{p=1}^m X^p$. X is a metric space with metric

$$d((x_1, \cdots, x_m), (y_1, \cdots, y_m)) = \sum_{p=1}^m d(x_p, y_p).$$

For each q and k let $\mathfrak{I}_{k}^{q} = \{\prod_{p=1}^{m} C^{p}: C^{p} \in \mathbb{S}_{k}^{pq} \text{ for each } p\}$. Each \mathfrak{I}_{k}^{q} is a discrete family of open sets of X, and each member of \mathfrak{I}_{k}^{q} is of diameter $\leq m\gamma_{k}$. For each k any n+1 of the families \mathfrak{I}_{k}^{q} cover X.

Let $\psi^{pq}(x) = \lim_{k \to \infty} f_k^{pq}(x)$ for $x \in X^p$. For each k and each $x \in X^p$, $f_k^{pq}(x) \leq \psi^{pq}(x) \leq f_k^{pq}(x) + \epsilon_k$. Thus ψ^{pq} , being the uniform limit of the f_k^{pq} , is continuous.

Let $\phi^q(x_1, \dots, x_m) = \sum_{p=1}^m \psi^{pq}(x_p)$ for $(x_1, \dots, x_m) \in X$. Let $\mathfrak{U}_k^q = \{\phi^q(C) : C \in \mathfrak{I}_k^q\}$. If $C = \prod_{p=1}^m C^p \in \mathfrak{I}_k^q$, then $\phi^q(C)$ is contained in the interval $[\sum_{p=1}^m f_k^{pq}(C^p), \sum_{p=1}^m f_k^{pq}(C^p) + m\epsilon_k]$. By condition (3) these closed intervals are disjoint for each fixed q and k. Hence each \mathfrak{U}_k^q is discrete.

Let f be a continuous real-valued function on X. For each integer $r \ge 0$ and $q = 1, \dots, 2n+1$ there exists a positive integer k_r and continuous functions $\chi_r^q \colon R \to R$ (R denotes the real line, $k_0 = 1$ and $\chi_0^q = 0$ for each q) such that if $f_r(x) = \sum_{a=1}^{2n+1} \sum_{s=0}^r \chi_s^q(\phi^q(x))$ for $x \in X$ and if $M_r = \sup_{x \in X} |(f - f_r)(x)|$, then:

(6) $k_{r+1} > k_r;$

(7) if $d(a, b) < m\gamma_{k_{r+1}}$, then $|(f-f_r)(a) - (f-f_r)(b)| < (2n+2)^{-1}M_r$;

(8) χ_{r+1}^{q} is constant on each member of $\mathfrak{U}_{k_{r+1}}^{q}$, its value on $\phi^{q}(C)$ for $C \in \mathfrak{I}_{k_{r+1}}^{q}$ being $(n+1)^{-1}(f-f_{r})(y)$ for some arbitrarily chosen element y of C;

(9) $|\chi_{r+1}^{a}(a)| \leq (n+1)^{-1}M_{r}$ for each $a \in \mathbb{R}$.

The k_r and χ_r^q are defined inductively on r. It is easily deduced from (7) and (8) that

1965]

P. A. OSTRAND

(10) $|(n+1)^{-1}(f-f_r)(x) - \chi^{q}_{r+1}(\phi^{q}(x))| < (n+1)^{-1}(2n+2)^{-1}M_r$ for $x \in \bigcup \{T: T \in \mathbb{S}^{q}_{k_{r+1}}\}.$

For each $x \in X$ there are at least n+1 distinct values of q such that that $x \in \bigcup \{T: T \in \mathbb{S}^{q}_{k_{r+1}}\}$. Adding (10) for n+1 values of q and (9) for the other n values of q yields

$$\left| (f - f_{r+1})(x) \right| = \left| (f - f_r)(x) - \sum_{q=1}^{2n+1} \chi_{r+1}^q(\phi^q(x)) \right| < \frac{2n+1}{2n+2} M_r$$

Then $M_{r+1} < (2n+1)(2n+2)^{-1}M_r$, so $M_r < ((2n+1)(2n+2)^{-1})^r M_0$ for each r and $\lim_{r\to\infty} M_r = 0$. Hence $f(x) = \lim_{r\to\infty} f_r(x)$ for all $x \in X$. Moreover, by condition (9) the functions $\sum_{s=0}^n \chi_s^q$ converge uniformly for each q to a continuous function $\chi^q: R \to R$ and

$$f(x) = \lim_{r \to \infty} f_r(x) = \lim_{r \to \infty} \sum_{q=1}^{2n+1} \sum_{s=0}^r \chi_s^q(\phi^q(x)) = \sum_{q=1}^{2n+1} \chi^q(\phi^q(x)).$$

This completes the proof of Theorem 2.

References

1. A. N. Kolmogorov, Representation of functions of many variables, Dokl. Akad. Nauk 114 (1957), 953–956; English transl., Amer. Math. Soc. Transl. (2) 17 (1961), 369–373.

2. V. I. Arnol'd, On functions of three variables, Dokl. Akad. Nauk 114 (1957), 679-681; English transl., Amer. Math. Soc. Transl. (2) 28 (1963), 51-54.

Northwestern University

622