A SIMPLE PROOF OF THE RABIN-KEISLER THEOREM

BY C. C. CHANG ${ }^{1}$
Communicated by D. Scott, March 29, 1965

For terminology and notation we refer to the two relevant papers of Rabin [3] and Keisler [1]. The following theorem is proved in [1] and is an improvement of the main result of [3].

Theorem (Rabin-Keisler). Let α be an infinite nonmeasurable cardinal. Then every model of power α has a proper elementary extension of the same power if and only if $\alpha=\alpha^{\omega}$.

The simple proof referred to in the title does not require the elaborate apparatus of limit ultrapowers (see [1]) or the generalized continuum hypothesis and that α be accessible (see [3]). On the other hand, the proof owes much to certain ideas in [3] and Keisler [2].

One direction of the theorem follows easily from elementary properties of ultrapowers. The following lemma will establish the other direction.

Lemma. Suppose α is an infinite nonmeasurable cardinal, $\mathfrak{T}=\langle A, R, S, \cdots\rangle$ is the complete model over a set A of power α, and $\mathfrak{T}^{\prime}=\left\langle A^{\prime}, R^{\prime}, S^{\prime}, \cdots\right\rangle$ is a proper elementary extension of $\mathfrak{T l}$. Then $\left|A^{\prime}\right| \geqq \alpha^{\omega}$.

Proof. By a well-known result in set theory (using finite sequences of elements from A), there exists a family

$$
P=\left\{P_{\beta}: \beta<\alpha^{\omega}\right\}
$$

of countably infinite subsets P_{β} of A such that $|P|=\alpha^{\omega}$ and $P_{\beta} \cap P_{\gamma}$ is finite whenever $\beta \neq \gamma$. Well-order each P_{β},

$$
P_{\beta}=\left\{p_{\beta n}: n<\omega\right\}
$$

Let $x \in A^{\prime}-A$, and let

$$
D=\left\{Q: Q \subset A \text { and } x \in Q^{\prime}\right\}
$$

It is easily seen that D is a nonprincipal ultrafilter over A. By hypothesis D is countably incomplete. Hence, there exists a strictly decreasing sequence

$$
A=Q_{0} \supset Q_{1} \supset \cdots \supset Q_{n} \supset \cdots
$$

[^0]of sets $Q_{n} \in D$ such that $\bigcap_{n} Q_{n}=0$. Fix $\beta<\alpha^{\omega}$. Define a function F_{β} mapping A onto P_{β} as follows: for each $a \in A$,
$$
F_{\beta}(a)=p_{\beta n} \text { if and only if } a \in Q_{n}-Q_{n+1}
$$

Notice that the function F_{β} (considered as a binary relation) and the sets P_{β}, Q_{n} are among the relations listed in \mathfrak{N}. Since $\mathfrak{N} \prec \mathscr{N}^{\prime}$, it follows that F_{β}^{\prime} is a function mapping A^{\prime} onto P_{β}^{\prime}. Furthermore, for each $a^{\prime} \in A^{\prime}$,

$$
F_{\beta}^{\prime}\left(a^{\prime}\right)=p_{\beta n} \text { if and only if } a^{\prime} \in Q_{n}^{\prime}-Q_{n+1}^{\prime}
$$

Since $x \in Q_{n}{ }^{\prime}$ for all n, we have

$$
F_{\beta}^{\prime}(x) \in P_{\beta}^{\prime}-P_{\beta}
$$

Using the fact that $P_{\beta} \cap P_{\gamma}$ is finite whenever $\beta \neq \gamma$, we have $\left(P_{\beta} \cap P_{\gamma}\right)^{\prime}$ $=P_{\beta}^{\prime} \cap P_{\gamma}^{\prime}=P_{\beta} \cap P_{\gamma}$. Hence

$$
F_{\beta}^{\prime}(x) \neq F_{\gamma}^{\prime}(x), \quad \text { whenever } \quad \beta \neq \gamma
$$

So $\left|A^{\prime}\right| \geqq \alpha^{\omega}$ and the lemma is proved.

References

1. H. J. Keisler, Limit ultrapowers, Trans. Amer. Math. Soc. 107 (1963), 382-408.
2. ——, Extending models of set theory (Abstract), J. Symbolic Logic (to appear).
3. M. Rabin, Arithmetical extensions with prescribed cardinality, Indag. Math. 21 (1959), 439-446.

University of California, Los Angeles

[^0]: ${ }^{1}$ Research supported in part by NSF Grant GP220.

