A SIMPLE PROOF OF THE RABIN-KEISLER THEOREM

BY C. C. CHANG¹

Communicated by D. Scott, March 29, 1965

For terminology and notation we refer to the two relevant papers of Rabin [3] and Keisler [1]. The following theorem is proved in [1] and is an improvement of the main result of [3].

THEOREM (RABIN-KEISLER). Let α be an infinite nonmeasurable cardinal. Then every model of power α has a proper elementary extension of the same power if and only if $\alpha = \alpha^{\omega}$.

The simple proof referred to in the title does not require the elaborate apparatus of limit ultrapowers (see [1]) or the generalized continuum hypothesis and that α be accessible (see [3]). On the other hand, the proof owes much to certain ideas in [3] and Keisler [2].

One direction of the theorem follows easily from elementary properties of ultrapowers. The following lemma will establish the other direction.

LEMMA. Suppose α is an infinite nonmeasurable cardinal, $\mathfrak{M} = \langle A, R, S, \cdots \rangle$ is the complete model over a set A of power α , and $\mathfrak{M}' = \langle A', R', S', \cdots \rangle$ is a proper elementary extension of \mathfrak{M} . Then $|A'| \ge \alpha^{\omega}$.

PROOF. By a well-known result in set theory (using finite sequences of elements from A), there exists a family

$$P = \left\{ P_{\beta} : \beta < \alpha^{\omega} \right\}$$

of countably infinite subsets P_{β} of A such that $|P| = \alpha^{\omega}$ and $P_{\beta} \cap P_{\gamma}$ is finite whenever $\beta \neq \gamma$. Well-order each P_{β} ,

$$P_{\beta} = \{p_{\beta n} : n < \omega\}.$$

Let $x \in A' - A$, and let

$$D = \{Q \colon Q \subset A \text{ and } x \in Q'\}.$$

It is easily seen that D is a nonprincipal ultrafilter over A. By hypothesis D is countably incomplete. Hence, there exists a strictly decreasing sequence

$$A = Q_0 \supset Q_1 \supset \cdots \supset Q_n \supset \cdots$$

¹ Research supported in part by NSF Grant GP220.

of sets $Q_n \in D$ such that $\bigcap_n Q_n = 0$. Fix $\beta < \alpha^{\omega}$. Define a function F_{β} mapping A onto P_{β} as follows: for each $a \in A$,

$$F_{\beta}(a) = p_{\beta n}$$
 if and only if $a \in Q_n - Q_{n+1}$.

Notice that the function F_{β} (considered as a binary relation) and the sets P_{β} , Q_n are among the relations listed in \mathfrak{M} . Since $\mathfrak{M} \prec \mathfrak{M}'$, it follows that F_{β}' is a function mapping A' onto P_{β}' . Furthermore, for each $a' \in A'$,

$$F'_{\beta}(a') = p_{\beta n}$$
 if and only if $a' \in Q'_n - Q'_{n+1}$.

Since $x \in Q_n'$ for all *n*, we have

$$F_{\beta}'(x) \in P_{\beta}' - P_{\beta}.$$

Using the fact that $P_{\beta} \cap P_{\gamma}$ is finite whenever $\beta \neq \gamma$, we have $(P_{\beta} \cap P_{\gamma})' = P_{\beta} \cap P_{\gamma}' = P_{\beta} \cap P_{\gamma}$. Hence

$$F_{\beta}'(x) \neq F_{\gamma}'(x), \text{ whenever } \beta \neq \gamma.$$

So $|A'| \ge \alpha^{\omega}$ and the lemma is proved.

References

1. H. J. Keisler, Limit ultrapowers, Trans. Amer. Math. Soc. 107 (1963), 382-408.

2. ——, Extending models of set theory (Abstract), J. Symbolic Logic (to appear).

3. M. Rabin, Arithmetical extensions with prescribed cardinality, Indag. Math. 21 (1959), 439-446.

UNIVERSITY OF CALIFORNIA, LOS ANGELES