A COMBINATORIAL THEOREM FOR STOCHASTIC PROCESSES

BY LAJOS TAKÁCS¹

Communicated by J. L. Doob, January 21, 1965

Let $\{\chi(u), 0 \le u \le t\}$ be a stochastic process where t is a finite positive number. We associate a stochastic process $\{\chi^*(u), 0 \le u < \infty\}$ with $\{\chi(u), 0 \le u \le t\}$ as follows: $\chi^*(u) = \chi(u)$ for $0 \le u \le t$ and $\chi^*(t+u) = \chi^*(t) + \chi^*(u)$ for u > 0. If the finite dimensional distributions of $\{\chi^*(v+u) - \chi^*(v), 0 \le u \le t\}$ are independent of v for $v \ge 0$, then the process $\{\chi(u), 0 \le u \le t\}$ is said to have cyclically interchangeable increments. In particular, if $\{\chi(u), 0 \le u \le t\}$ has stationary, independent increments, and $P\{\chi(0) = 0\} = 1$, then it belongs to this class.

THEOREM. If $\{\chi(u), 0 \le u \le t\}$ is a separable stochastic process with cyclically interchangeable increments and if almost all sample functions are nondecreasing step functions which vanish at u = 0, then

$$P\{\chi(u) \leq u \text{ for } 0 \leq u \leq t \mid \chi(t)\}$$
(1)
$$=\begin{cases} \left(1 - \frac{\chi(t)}{t}\right) & \text{if } 0 \leq \chi(t) \leq t, \\ 0 & \text{otherwise,} \end{cases}$$

with probability 1.

PROOF. Let $\chi^*(u)$, $0 \le u < \infty$, be a nondecreasing step function (nonrandom) for which $\chi^*(0) = 0$ and $\chi^*(t+u) = \chi^*(t) + \chi^*(u)$ if u > 0 where t is a fixed positive number. For $u \ge 0$ define

(2)
$$\xi(u) = \begin{cases} 1 & \text{if } \chi^*(v) - \chi^*(u) \leq v - u \text{ for } v \geq u, \\ 0 & \text{otherwise.} \end{cases}$$

Obviously $\xi(u+t) = \xi(u)$ for all $u \ge 0$. Now we shall prove that

(3)
$$\int_0^t \xi(u) du = \begin{cases} t - \chi^*(t) & \text{if } 0 \leq \chi^*(t) \leq t, \\ 0 & \text{otherwise.} \end{cases}$$

The case $\chi^*(t) \ge t$ is obvious. Thus we suppose that $0 \le \chi^*(t) < t$. Define

¹ This research was sponsored by the Office of Naval Research under Contract Number Nonr-266(59).

LAJOS TAKÁCS

(4)
$$\alpha(c) = \sup \{ u : u - \chi^*(u) < c \text{ and } 0 \leq u < \infty \}$$

for c > 0. The function $\alpha(c)$ is increasing. $\alpha(c)$ increases either linearly with slope 1 or by jumps. Evidently $\alpha(c-0) = \alpha(c)$ and $\alpha(c+t-\chi^*(t)) = \alpha(c)+t$ for c > 0. If $u = \alpha(c)$, then $\xi(u) = 1$. Since $\alpha(c) - \chi^*(\alpha(c)) = c$ and $u - \chi^*(u) \ge c$ for $u \ge \alpha(c)$, it follows that $\chi^*(u) - \chi^*(\alpha(c)) \le u - \alpha(c)$ for $u \ge \alpha(c)$, that is, $\xi(\alpha(c)) = 1$. If $\alpha(c) < u < \alpha(c+0)$, then evidently $\xi(u) = 0$. Accordingly, in the interval $[\alpha(c), \alpha(c+t-\chi^*(t))]$ of length $t, \xi(u) = 1$ on the set $\{u: u = \alpha(z) \text{ for } c \le z \le c+t-\chi^*(t)\}$ of measure $t - \chi^*(t)$ and $\xi(u) = 0$ elsewhere. (If $\chi^*(u)$ is defined as continuous on the right, and z is a discontinuity point of $\alpha(z)$, then also $\xi(\alpha(z+0))$ = 1. However, since the discontinuity points of $\alpha(z)$ form a set of measure 0, this does not make any difference.) Since $\xi(u)$ is periodic with period t, (3) follows.

Now, if we suppose that $\{\chi^*(u), 0 \le u < \infty\}$ is the stochastic process associated with the process $\{\chi(u), 0 \le u \le t\}$ under consideration and if $\xi(u)$ is defined by (2), then $\xi(u)$ is a random variable which has the same distribution for all $u \ge 0$. Thus

$$P\{\chi(u) \le u \text{ for } 0 \le u \le t \mid \chi(t)\}$$

= $E\{\xi(0) \mid \chi(t)\} = \frac{1}{t} \int_{0}^{t} E\{\xi(u) \mid \chi(t)\} du$
= $E\{\frac{1}{t} \int_{0}^{t} \xi(u) du \mid \chi(t)\} = \begin{cases} \left(1 - \frac{\chi(t)}{t}\right) & \text{if } 0 \le \chi(t) \le t, \\ 0 & \text{otherwise,} \end{cases}$

with probability 1. The last equality follows from identity (3) which now holds for almost all sample functions. This completes the proof of the theorem.

COLUMBIA UNIVERSITY

650