THE DISTRIBUTION OF THE SUM OF DIGITS (mod p)

BY N. J. FINE

Communicated by A. Zygmund, February 12, 1965

Let s_n be the sum of the digits of n written in the base b > 1. S. Ulam has asked (for b=10) whether the number of n < x for which $s_n \equiv n \equiv 0 \pmod{13}$ is asymptotically $x/13^2$. His question is answered here affirmatively by the following theorem.

THEOREM. Let p be a prime such that $p \nmid (b-1)$, and let a and c be any residues mod p. If N(x) is the number of n < x for which $n \equiv a \pmod{p}$ and $s_n \equiv c \pmod{p}$, then

$$\lim_{x\to\infty}\frac{N(x)}{x}=\frac{1}{p^2}$$

PROOF. Let $x=d_0+d_1b+d_2b^2+\cdots+d_kb^k$, with $0 \leq d_m < b$, $d_k > 0$. For $j \geq 0$, define

$$f_j(u, v) = 1 + uv^{b^j} + u^2 v^{2b^j} + \cdots + u^{b-1} v^{(b-1)b^j}.$$

Also, let A(i, n) = 1 if $0 \le n < x$ and $s_n = i$, A(i, n) = 0 otherwise. If

$$f(u, v) = \sum_{i,n} A(i, n) u^{i} v^{n},$$

then, writing $\omega = \exp(2\pi i/p)$, we have

(1)
$$N(x) = \frac{1}{p^2} \sum_{g,h=0}^{p-1} \omega^{-cg-ah} f(\omega^g, \omega^h)$$

If $0 \le n < x$, we may write, uniquely,

(2) $n = d'_0 + d'_1 b + \cdots + d'_{m-1} b^{m-1} + i b^m + d_{m+1} b^{m+1} + \cdots + d_k b^k$, with $0 \le d'_j < b$ $(j=0, 1, \cdots, m-1), 0 \le t < d_m$, and $m=0, 1, \cdots, k$. Splitting the generating function according to (2), we have

(3)
$$f(u, v) = \sum_{m=0}^{k} \left\{ \prod_{r=m+1}^{k} u^{d_r v^{d_r b^r}} \right\} \sum_{t=0}^{d_m-1} u^t v^{t b^m} \prod_{j=0}^{m-1} f_j(u, v),$$

where an empty sum is 0, an empty product 1. Observe that f(1, 1) = x, so

(4)
$$N(x) = \frac{x}{p^2} + \frac{1}{p^2} \sum_{(g,h)\neq (0,0)} \omega^{-cg-ah} f(\omega^g, \omega^h).$$

It will be sufficient, therefore, to show that $f(\omega^g, \omega^h) = o(x)$ if $(g, h) \neq (0, 0)$.

Now observe that

(5)
$$|f_j(\omega^g, \omega^h)| \leq b$$

and that equality holds if and only if

(6) $g + hb^j \equiv 0 \pmod{p}$.

Also, if (6) does not hold, then

(7)
$$|f_j(\omega^g, \omega^h)| \leq \lambda b,$$

where $\lambda < 1$ depends only on p and b. In fact,

(8)
$$\lambda = \frac{\left|\sin \pi b/p\right|}{b\sin \pi/p} \cdot$$

To estimate the error in (4), we distinguish two cases. First, suppose that $p \mid b$. Then $f_0(\omega^g, \omega^h) = 0$ unless $g + h \equiv 0 \pmod{p}$, and $f_1(\omega^g, \omega^h) = 0$ unless $g \equiv 0 \pmod{p}$. Since every term with m > 1 in (3) contains the factor f_0f_1 , we have

$$\left|f(\omega^{g}, \omega^{h})\right| \leq d_{0} + d_{1}b < b^{2}$$

when $(g, h) \neq (0, 0)$. In this case, therefore,

(9)
$$\left|N(x) - \frac{x}{p^2}\right| < b^2.$$

Next, suppose that $p \nmid b$. For a given (g, h), if (6) holds for j and j+1, then

$$hb^{j}(b-1) \equiv 0 \pmod{p},$$

so $h \equiv 0 \pmod{p}$, therefore $g \equiv 0 \pmod{p}$. Hence, if $(g, h) \neq (0, 0)$, the *m*th summand in (3) contains at least [m/2] factors f_i for which (6) fails and (7) holds. Thus

(10)
$$|f(\omega^{g}, \omega^{h})| \leq \sum_{m=0}^{k} d_{m} b^{m} \lambda^{[m/2]} \leq b \lambda^{-1/2} \sum_{m=0}^{k} (b \lambda^{1/2})^{m} = O(x \lambda^{k/2}).$$

This completes the proof. [Note: The estimate in (10) can be improved to yield the exponent $k(1-1/\mu)$, where μ is the exponent to which b belongs mod p.]

We remark that for distinct primes p, q, the residues of $n \pmod{p}$ and $s_n \pmod{q}$ are asymptotically independent. The proof is simpler than the one given above, and there are no exceptional cases.

THE PENNSYLVANIA STATE UNIVERSITY

652