THE DISTRIBUTION OF THE SUM OF DIGITS $(\bmod p)$

BY N. J. FINE

Communicated by A. Zygmund, February 12, 1965

Let s_{n} be the sum of the digits of n written in the base $b>1$. S. Ulam has asked (for $b=10$) whether the number of $n<x$ for which $s_{n} \equiv n \equiv 0(\bmod 13)$ is asymptotically $x / 13^{2}$. His question is answered here affirmatively by the following theorem.

Theorem. Let p be a prime such that $p \nmid(b-1)$, and let a and c be any residues $\bmod p$. If $N(x)$ is the number of $n<x$ for which $n \equiv a(\bmod p)$ and $s_{n} \equiv c(\bmod p)$, then

$$
\lim _{x \rightarrow \infty} \frac{N(x)}{x}=\frac{1}{p^{2}}
$$

Proof. Let $x=d_{0}+d_{1} b+d_{2} b^{2}+\cdots+d_{k} b^{k}$, with $0 \leqq d_{m}<b, d_{k}>0$. For $j \geqq 0$, define

$$
f_{j}(u, v)=1+u v^{b^{j}}+u^{2} v^{2 b^{j}}+\cdots+u^{b-1} v^{(b-1) b^{j}}
$$

Also, let $A(i, n)=1$ if $0 \leqq n<x$ and $s_{n}=i, A(i, n)=0$ otherwise. If

$$
f(u, v)=\sum_{i, n} A(i, n) u^{i} v^{n}
$$

then, writing $\omega=\exp (2 \pi i / p)$, we have

$$
\begin{equation*}
N(x)=\frac{1}{p^{2}} \sum_{o, h=0}^{p-1} \omega^{-c o-a h} f\left(\omega^{0}, \omega^{h}\right) \tag{1}
\end{equation*}
$$

If $0 \leqq n<x$, we may write, uniquely,
(2) $n=d_{0}^{\prime}+d_{1}^{\prime} b+\cdots+d_{m-1}^{\prime} b^{m-1}+t b^{m}+d_{m+1} b^{m+1}+\cdots+d_{k} b^{k}$, with $0 \leqq d_{j}^{\prime}<b(j=0,1, \cdots, m-1), 0 \leqq t<d_{m}$, and $m=0,1, \cdots, k$. Splitting the generating function according to (2), we have

$$
\begin{equation*}
f(u, v)=\sum_{m=0}^{k}\left\{\prod_{r=m+1}^{k} u^{d_{r} v^{d} b^{r}}\right\} \sum_{t=0}^{d_{m-1}} u^{t} v^{t b^{m}} \prod_{j=0}^{m-1} f_{j}(u, v) \tag{3}
\end{equation*}
$$

where an empty sum is 0 , an empty product 1 . Observe that $f(1,1)$ $=x$, so

$$
\begin{equation*}
N(x)=\frac{x}{p^{2}}+\frac{1}{p^{2}} \sum_{(o, h) \neq(0,0)} \omega^{-c g-a h} f\left(\omega^{d}, \omega^{h}\right) \tag{4}
\end{equation*}
$$

It will be sufficient, therefore, to show that $f\left(\omega^{a}, \omega^{h}\right)=o(x)$ if (g, h) $\neq(0,0)$.

Now observe that

$$
\begin{equation*}
\left|f_{j}\left(\omega^{\sigma}, \omega^{h}\right)\right| \leqq b \tag{5}
\end{equation*}
$$

and that equality holds if and only if

$$
\begin{equation*}
g+h b^{j} \equiv 0(\bmod p) \tag{6}
\end{equation*}
$$

Also, if (6) does not hold, then

$$
\begin{equation*}
\left|f_{j}\left(\omega^{0}, \omega^{h}\right)\right| \leqq \lambda b \tag{7}
\end{equation*}
$$

where $\lambda<1$ depends only on p and b. In fact,

$$
\begin{equation*}
\lambda=\frac{|\sin \pi b / p|}{b \sin \pi / p} \tag{8}
\end{equation*}
$$

To estimate the error in (4), we distinguish two cases. First, suppose that $p \mid b$. Then $f_{0}\left(\omega^{a}, \omega^{h}\right)=0$ unless $g+h \equiv 0(\bmod p)$, and $f_{1}\left(\omega^{a}, \omega^{h}\right)=0$ unless $g \equiv 0(\bmod p)$. Since every term with $m>1$ in (3) contains the factor $f_{0} f_{1}$, we have

$$
\left|f\left(\omega^{a}, \omega^{h}\right)\right| \leqq d_{0}+d_{1} b<b^{2}
$$

when $(g, h) \neq(0,0)$. In this case, therefore,

$$
\begin{equation*}
\left|N(x)-\frac{x}{p^{2}}\right|<b^{2} \tag{9}
\end{equation*}
$$

Next, suppose that $p \nmid b$. For a given (g, h), if (6) holds for j and $j+1$, then

$$
h b^{j}(b-1) \equiv 0(\bmod p)
$$

so $h \equiv 0(\bmod p)$, therefore $g \equiv 0(\bmod p)$. Hence, if $(g, h) \neq(0,0)$, the m th summand in (3) contains at least [$m / 2$] factors f_{j} for which (6) fails and (7) holds. Thus

$$
\begin{equation*}
\left|f\left(\omega^{\natural}, \omega^{h}\right)\right| \leqq \sum_{m=0}^{k} d_{m} b^{m} \lambda^{[m / 2]} \leqq b \lambda^{-1 / 2} \sum_{m=0}^{k}\left(b \lambda^{1 / 2}\right)^{m}=O\left(x \lambda^{k / 2}\right) \tag{10}
\end{equation*}
$$

This completes the proof. [Note: The estimate in (10) can be improved to yield the exponent $k(1-1 / \mu)$, where μ is the exponent to which b belongs $\bmod p$.]

We remark that for distinct primes p, q, the residues of $n(\bmod p)$ and $s_{n}(\bmod q)$ are asymptotically independent. The proof is simpler than the one given above, and there are no exceptional cases.

[^0]
[^0]: The Pennsilvania State University

