SOME HOMOTOPY GROUPS OF STIEFEL MANIFOLDS ${ }^{1}$

BY C. S. HOO AND M. E. MAHOWALD
Communicated by W. S. Massey, February 1, 1965

Paechter [7] made some computations of $\pi_{k+p}\left(V_{k+m, m}\right)$ where $V_{k+m, m}$ is the Stiefel manifold of m frames in $k+m$ space. In this note we give a table (Table 1) extending his results in the case where m is large. Since $V_{k+m, m} \rightarrow V_{k+m+1, m+1} \rightarrow S^{k+m}$ is a fibering it is clear that $\pi_{k+p}\left(V_{k+m, m}\right)$ depends only on k and p for $p \leqq m-2$. This is called the stable range and we feel that these stable groups are the most important ones. On the other hand for small values of m, one of us [4] has made extensive computations and the results are available.

James' periodicity [5, Theorem 3.1] is reflected in the table but the basic periodicity of period 8 is also present.

In [1] it is proved that if $n>12$, then $\pi_{j}(S O(n))=\pi_{j}(S O)$ $+\pi_{j+1}\left(V_{2 n, n}\right)$ for $j<2 n-1$. Hence it is easy to deduce the first fourteen nonstable groups of $S O(n)$ from this table.

Tables of homotopy groups are much more useful if generators are given. Instead of generators we settle for giving the order of the image of $i_{*}: \pi_{k+p}\left(S^{k}\right) \rightarrow \pi_{k+p}\left(V_{k+m, m}\right)$ (Table 2). One can construct the generators from this information and this map has important connections with Whitehead products [2].

The groups have been computed by using modified Postnikov towers [6]. An outline of the computation for one case, 6 mod 32, is given. The case $k \equiv 6 \mathrm{mod} 32$. This procedure is essentially the same as the Adams spectral sequence method.

Let $k=32 n+6$ and we suppose m is large. Consider the fibering $V_{32 n+6,7} \rightarrow V_{32 n+m, m+1} \rightarrow V_{32 n+m, m-6}$. We are only interested in groups in the homotopy stable range so that we can construct a new fibering

$$
\Sigma^{-1} V_{32 n+m, m-6} \rightarrow V_{32 n+6,7} \rightarrow V_{32 n+m, m+1}
$$

We will build the modified Postnikov tower to this fibering. By [3] the cohomology of $V_{32 n+m, m+1}$ is given by

$$
\begin{aligned}
H^{i}\left(V_{32 n+m, m+1} ; Z_{2}\right) & =0, \quad 0<i<32 n-1 . \\
& =Z_{2}, \quad 32 n-1 \leqq i \leqq 32 n+m-1 .
\end{aligned}
$$

Let h_{i} generate $H^{i}\left(V_{32 n+m, m+1} ; Z_{2}\right)$ when it is nonzero. Then $S q^{i} h_{i}$
${ }^{1}$ This research was supported by a grant from the U. S. Army Research Office (Durham).
Table 1

$\pi_{k+p}\left(V_{k+m, m}\right)$ for m large and $k \equiv i \bmod 8$ except as otherwise noted								
p ${ }^{\text {i }}$	0	1	2	3	4	5	6	7
0	Z	Z_{2}	Z	z_{2}	Z	Z_{2}	Z	Z_{2}
1	$\mathrm{Z}_{2}{ }^{2}$	Z_{2}	Z_{4}	0	$\mathrm{Z}_{2}{ }^{2}$	Z_{2}	Z_{4}	0
2	$\mathrm{Z}_{2}{ }^{2}$	Z_{8}	0	Z_{2}	$\mathrm{z}_{2}{ }^{2}$	Z_{8}	0	Z_{2}
3	$\mathrm{Z}_{8}{ }^{2} \mathrm{Z}_{3}$	Z_{2}	$\mathrm{Z}_{4}+\mathrm{Z}_{3}$	$\mathrm{z}_{2}{ }^{2}$	$\mathrm{Z}_{4}+\mathrm{Z}_{16}+\mathrm{Z}_{3}$	Z_{2}	$\mathrm{Z}_{4}+\mathrm{Z}_{3}$	Z_{2}
4	Z_{2}	0	Z_{2}	Z_{16}	z_{2}	0	0	Z_{8}
5	0	Z_{2}	Z_{16}	Z_{2}	0	0	Z_{8}	z_{2}
6	$\mathrm{Z}_{2}{ }^{2}$	$\mathrm{Z}_{2} \mathrm{Z}_{16}$	$\mathrm{z}_{2}{ }^{2}$	Z_{2}	0	Z_{8}	Z_{4}	0
$\begin{aligned} & 7 \\ & 7 \\ & 0(16) \mathrm{Z}_{16}{ }^{2}+\mathrm{Z}_{2}+\mathrm{Z}_{15} \\ & { }^{8(16)} \mathrm{Z}_{32}+\mathrm{Z}_{8}+\mathrm{Z}_{2}+\mathrm{Z}_{15} \\ & \hline \end{aligned}$			$\mathrm{Z}_{16}+\mathrm{Z}_{2}+\mathrm{Z}_{15}$	Z_{2}	$\mathrm{Z}_{16}+\mathrm{Z}_{4}+\mathrm{Z}_{15}$	$\mathrm{z}_{2}{ }^{2}$	$\mathrm{Z}_{16}+\mathrm{Z}_{15}{ }_{15(16)}^{7(16)} \mathrm{Z}_{2}^{2}$	
8	$\mathrm{z}_{2}{ }^{5}$	z_{2}^{4}	Z_{4}	Z_{8}	$\mathrm{z}_{2}{ }^{4}$	$\mathrm{z}_{2}{ }^{3}$	$\begin{gathered} 6(32) \mathrm{Z}_{4} \mathrm{Z}_{2} \\ 22(32) \mathrm{Z}_{4}{ }^{2} \end{gathered}$	$\begin{aligned} & 7(16) Z_{2} Z_{32} \\ & 15(16) Z_{16} Z_{2} \end{aligned}$
							14(16) Z_{4}	
9	$\mathrm{z}_{2}{ }^{7}$	$\mathrm{z}_{8} \mathrm{z}_{2}$	Z_{8}	$\mathrm{z}_{2}{ }^{2}$	$\mathrm{z}_{2}{ }^{5}$	$\begin{aligned} & z_{2}^{2} z_{4} \\ & Z_{2}+Z_{4}^{2} \\ & Z_{2}+Z_{4}+Z_{8} \end{aligned}$	6(32) $\mathrm{Z}_{2} \mathrm{Z}_{3}$ 22(32) $\mathrm{Z}_{2} \mathrm{Z}_{6}$	$\mathrm{z}_{2}{ }^{3}$
						$\mathrm{Z}_{2} \mathrm{Z}_{4}$	14(16) $\mathrm{Z}_{2} \mathrm{Z}_{1}$	

10	$z_{2}{ }^{2} z_{8}+z_{3}$	z_{8}	z_{3}	$\mathrm{z}_{2}{ }^{2}$	$\begin{aligned} & 4(32) z_{2}^{4} z_{3} \quad 5(32) z_{32} \\ & 20(64) z_{2}^{3} z_{12} 21(64) z_{64} \\ & 52(64) z_{2}^{3} z_{z} z_{3} 53(64) z_{128} \\ & \text { 12(16) } z_{2}^{3} z_{3} \quad 13(16) z_{16} \end{aligned}$	$z_{2} z_{3}$	$z_{2}{ }^{4}$
11	$z_{8}^{2}+z_{63}$	0	$z_{8}+z_{63}$	$\begin{gathered} 3(32) \mathrm{z}_{2}^{3} \\ 19(64) \mathrm{Z}_{2}{ }^{2} \mathrm{Z}_{4} \\ 51(128) \mathrm{z}_{2} \mathrm{z}_{8} \\ 115(128) \mathrm{z}_{2} \mathrm{Z}_{16} \\ 11(16) \mathrm{z}_{2}{ }^{2} \end{gathered}$	$\begin{gathered} 4(32) z_{8}+z_{32}+z_{63} \\ { }_{20}^{20(64)} \mathrm{z}_{8}+\mathrm{z}_{64}+\mathrm{Z}_{63} \\ 52(128) \mathrm{z}_{8}+\mathrm{Z}_{128}+\mathrm{Z}_{63} \mathrm{z}_{2} \\ 116(128) \mathrm{z}_{4}+\mathrm{z}_{256}+\mathrm{Z}_{63} \\ 12(16) \mathrm{z}_{8}+\mathrm{z}_{16}+\mathrm{z}_{63} \\ \hline \end{gathered}$	$\mathrm{z}_{2}{ }^{2} \mathrm{z}_{8}$	$\mathrm{z}_{2} \mathrm{z}_{8}$
12	0	0	2(32) $\mathrm{Z}_{2}{ }^{2}$ $18(64) \mathrm{Z}_{2} \mathrm{Z}_{4}$ 50(128) $\mathrm{Z}_{8} \mathrm{Z}_{2}$ $114(128) \mathrm{Z}_{2} \mathrm{Z}_{16}$ $10(16) \mathrm{Z}_{2}$ 103	$\begin{array}{r} 3(32) \mathrm{Z}_{32} \\ 19(64) \mathrm{Z}_{64} \\ 51(128) \mathrm{Z}_{128} \\ 115(128) \mathrm{Z}_{256} \\ 11(16) \mathrm{Z}_{16} \\ \hline \end{array}$	$\mathrm{z}_{2} \quad \mathrm{z}_{2}{ }^{2}$	z_{8}	z_{8}
13		$\begin{gathered} 1(32) \mathrm{Z}_{2} \\ 17(64) \mathrm{z}_{2} \mathrm{Z}_{4} \\ 49(128) \mathrm{Z}_{8} \mathrm{Z}_{2} \\ 13(128) \mathrm{Z}_{2} \mathrm{Z}_{16} \\ 9(16) \mathrm{Z}_{2} \\ \hline \end{gathered}$	$\begin{array}{r} 2(32) z_{32}+z_{3} \\ 18(64) z_{64}+z_{3} \\ 50(128) z_{128}+z_{3} \\ 114(128) z_{256}+z_{3} \\ 10(16) z_{16}+z_{3} \\ \hline \end{array}$	z_{2}	$\mathrm{z}_{2}{ }^{2} \mathrm{z}_{3} \quad \mathrm{z}_{8}$	$\mathrm{Z}_{8}+\mathrm{Z}_{3}$	0

Table 2
Order of $\operatorname{im}\left(i_{*} \pi_{j}\left(s^{n}\right) \rightarrow \pi_{j}\left(V_{2 n, n}\right)\right)$
Top row is the name of the stem

$n(8) \quad$ ¢	η	η^{2}	ν	ν^{2}	σ	ϵ	$\bar{\nu}$	$\eta \sigma$	$\boldsymbol{\eta}$	$\eta \bar{\nu}$	$\eta^{2} \sigma$	μ	$\eta \mu$	ζ
0∞	2	2	8	2	16	2	2	2	2	2	2	2	2	8
12	2	2	2	2	2	2	2	2	0	2	2	2	2	0
2∞	2	0	4	2	16	0	2	2	0	0	0	2	0	4
${ }_{115(128)}^{3}{ }^{2}$	0	0	2	2	2	0	0	0	0	0	0	0	0	0
4∞	2	2	8	0	16	2	2	2	2	0	2	2	2	8
$\begin{array}{cc} 5 & 2 \\ 53(64) & \end{array}$	2	2	2	0	2	2	2	2	0	0	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	2	2	0
$\underset{22(32)}{6} \quad \infty$	2	0	4	2	16	2	2	0	0	0	0	2	0	4
$\begin{array}{rr} 7 & 2 \\ 15 & \end{array}$	0	0	0	0	2	0	0	0	0	0	0	0	0	0

$=\left({ }_{f}^{f}\right) h_{i+j}$. Hence the cohomology of the base space is given by $h_{32 n+}$ $=S q^{i+1} h_{32 n-1}$. We let $h_{32 n-1}=h$.

1 st level. Over the Steenrod algebra the basis for ker p^{*} is given by $\left\{S q^{7} h, S q^{8} h, S q^{16} h\right\}$. Of these three only the first two can be spherical in the sense of [6]. Indeed using $i: V_{k+m, m} \rightarrow B S O(k)$ each class in $\pi_{j}\left(V_{k+m, m}\right)$ represents a k-plane bundle over S^{j} which becomes trivial when summed with a trivial m-plane bundle. It is also easy to see that the bundle is a framed tangent bundle of S^{j} if and only if the cohomology map is nontrivial. Since the $15+32 n$ sphere has only an eight field, $S q^{16} h$ is not spherical. It is useful to kill it anyway but one has to be careful and identify the element at a later stage which is produced because of this.

2nd level. Consider the following fibering

$$
\begin{aligned}
K_{1}(Z, 32 n+5) \times K_{2}\left(Z_{2}, 32 n+6\right) \times K\left(Z_{2}, 32 n+\right. & 14) \\
& \xrightarrow{i} E^{1} \xrightarrow{q} V_{32 n+m, m+1}
\end{aligned}
$$

with k-invariants $S q^{7} h, S q^{8} h$ and $S q^{16} h$.
Table 3
A modified Postnikov tower for $V_{k+m, m}, k \equiv 6(32), m$ large

Proposition. A class $\nu \in H^{j}\left(E^{1}, Z_{2}\right)$ such that $\nu \in \operatorname{im} q^{*}$ and $j \leqq 64 n-3$ satisfies: $i^{*} \nu=\sum_{i=1}^{3} \beta_{i} \alpha_{i}$ where α_{i} is the fundamental class of K_{i} and β_{i} is an element of the Steenrod algebra such that $\beta_{1} S q^{7}+\beta_{2} S q^{8}+\beta_{3} S q^{16}$, as an element in the Steenrod algebra, has only classes of length 2 or more in its Cartan basis representation.

Using this representation of $H^{*}\left(E^{1}\right)$ it is now just a lengthy but straight forward computation to verify that the classes in Table 3, column 2 do form a basis over the Steenrod algebra for $H^{j}\left(E^{1}\right)$ if $32 n+7 \leqq j \leqq 32 n+21$.
$3 r d$ level. Consider the fibering

$$
\prod_{i=1}^{9} K_{i}\left(Z_{2}, n_{i}\right) \rightarrow E^{2} \rightarrow E^{1}
$$

with k-invariants given by Table 3. We use β_{i} to represent also the fundamental class of K_{i}. The value of n_{i} can be inferred from the table. Consider the diagram

$$
\begin{aligned}
& H^{*}\left(E^{2}\right) \xrightarrow{i_{2}^{*}} H^{*}\left(\pi K_{i}\left(Z_{2}, n_{i}\right)\right) \xrightarrow{\delta^{*}} H^{*}\left(E^{2}, \pi K_{i}\right) \\
& \stackrel{\searrow}{\tau} \quad \uparrow \simeq \\
& H^{*}\left(E^{1}\right) \underset{i_{1}^{*}}{\rightarrow} H^{*}\left(K_{1} \times K_{2} \times K_{3}\right)
\end{aligned}
$$

Proposition. A class $\nu \in H^{j}\left(E^{2}\right), 7 \leqq j-32 n \leqq 21$, is defined uniquely by a sum $\sum_{i=1}^{9} a_{i} \beta_{i}$ satisfying:
(1) $i_{2}^{*} \nu=\sum_{i=1}^{9} a_{i} \beta_{i}$ and
(2) $\sum a_{i}\left(i_{1}^{*} \tau \beta_{i}\right)=0$.

This is a special case of 3.3.4 of [6].
Using this proposition the cohomology of E^{2} in the interesting range can be computed. Another lengthy computation shows that column 3 of Table 3 is a basis over the Steenrod algebra for $H^{i}\left(E^{2}\right), 7 \leqq j-32 n$ $\leqq 21$.

4th and higher levels. The computations are made as in the third level, using 3.3 .4 of [6]. Nothing unusual happens. The class corresponding to $\gamma_{6}+\delta_{5}$ is the extraneous class produced by killing $S q^{16} h$. This follows from Toda [8]. It is amusing to note that the formula of Adams [0]

$$
S q^{16}=\sum a_{i, j, 3} \phi_{i, j}
$$

with coefficients, for example, $a_{3,3,3}=S q^{1}$ and $a_{1,3,3}=S q^{7}+S q^{4} S q^{2} S q^{1}$, essentially given by γ_{6}.

Bibliography

0. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104.
1. M. G. Barratt and M. E. Mahowald, The metastable homotopy of $O(n)$, Bull. Amer. Math. Soc. 70 (1964), 758-760.
2. -, The metastable homotopy of S^{n} (to appear).
3. A. Borel, La cohomologie mod 2 de certains espaces homogenes, Comment. Math. Helv. 27 (1953), 165-197.
4. C. S. Hoo, Homotopy groups of Stiefel manifolds, Ph.D. Thesis, Syracuse University, Syracuse, N. Y., 1964 (mimeographed notes, Northwestern University).
5. I. M. James, Cross-sections of Stiefel manifolds, Proc. London Math. Soc. 8 (1958), 536-547.
6. M. E. Mahowald, Obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349.
7. G. F. Paechter, The group $\pi_{r}\left(V_{n, m}\right)$. I, Quart. J. Math. Oxford Ser. 7 (1956), 249-268.
8. H. Toda, Vector fields on spheres, Bull. Amer. Math. Soc. 67 (1961), 408-412.

University of Illinois and Northwestern University

