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Introduction. Some important and fundamental theorems in com-
plex analysis are simple consequences of theorems in the theory of
light open mappings for 2-manifolds. This rather complete theory is
largely the work of G. T. Whyburn [9], [10], [11]. One theorem
which includes the well-known theorems of Darboux [4] and Stoilow
[8] is the following:

THEOREM (WHYBURN). Suppose that f is a light open mapping of a
disk A (topological 2-cell) onto a disk B such that (a) f(Int A) =Int B
and (b) fl Bd A4 is a homeomorphism of Bd A onto Bd B. Then f is a
homeomorphism.

In his paper [12], Whyburn has conjectured that if in the above
theorem each of 4 and B is a topological #-cell, then f is a homeomor-
phism. This is an extremely difficult problem. One result of this
announcement provides an affirmative answer for special cases of
this conjecture. Church and Hemmingsen [1], [2], [3] have made
significant contributions on related problems. Meisters and Olech [7]
have some results for very special types of light open mappings;
namely, either locally 1-1 maps or locally 1-1 maps except on discrete
sets of a certain type.

Here, each mapping is continuous and each space is metric. A map-
ping f of a space X into a space Y is light iff f~!f(x) is totally discon-
nected for each x in X. And, f is open iff for each U open in X, f(U)
is open relative to f(X).

Suppose that f is a light mapping of a space X into a space Y. We
shall say that the singular set Sy of f is the set of points x in X such
that f is not locally 1-1 at x; i.e., there is no set U open in X and con-
taining x such that f| U is 1-1. We consider here only mappings f
which preserve both the boundary and the interior of X (both of which
are assumed to be nonempty).

THEOREM 1. Suppose that X is a compact subset of a metric space M,
Bd X0, Int X0, and f is a light open mapping of X into M such
that (1) f(Int X)=Int f(X), (2) f(Bd X)=Bd f(X), (3) the singular

1 The author carried out research on these and various other related problems at
the University of Virginia where he held an ONR Research Fellowship, 1962-1963.
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set Sy has the property that f(Sy) does not contain a nonempty set open
relative to f(X), (4) f(Sy) does not separate f(X), and (5) there exists a
nonempty U in X open relative to X such that f I U is 1-1 and f~1f(U)
= U. Then f is a homeomorphism.

This theorem is a generalization of theorems due to Meisters and
Olech [6]. We use some techniques of theirs and also theorems from
Whyburn’s theory of light open mappings.

Let P denote the set of all points y in f(X) such that f-1(y) is
nondegenerate. Now, f is a homeomorphism iff P is empty. We shall
show that P is empty.

LEMMA 1. The set P is open relative to f(X) and contains a nonempty
open set if P is nonempty.

LEMMA 2. The set A=f(S;)\JP is closed and therefore compact.

ProoF. Suppose that y is a limit point of 4 but y&f(X)—4.
Clearly, ¥ is a limit point of P—f(S;). Now, f~(y) is a point x and
fis locally 1-1 at x. Hence, there is a #nbhd N, of x such that f| N, is
1-1, f~Yf(Nz) = N, and f(N,) is open relative to f(X). This involves a
contradiction.

Proor oF THEOREM 1. Suppose that P is nonempty. It follows that
F(Sp) N Int f(X) = f(Sy N Int X). Now, f(Sy) = f(Sy N Bd X)
UF(S;NInt X). Also, f(X)—£(Sy)={[f(X)—f(SPINP}U{[f(X)
—f(S) IN[f(X) —P]}. Furthermore, [f(X)—f(Sy)]NP is open rela-
tive to f(X).

By Lemma 2, f(S;)\UP is closed. Therefore, B=£(X) — [f(S;)\UP]
= [f(X) —f(Sy) N [f(X) — P] is open in f(X). Both B and f(X) —£(Sy)
are nonempty. Since f(X) —f(S;) is connected, [f(X)—f(S)]NP=0
and, consequently, P =0. We have a contradiction to our assumption
that f is not 1-1 and the theorem is proved.

CoOROLLARY 1. Suppose that X is a compact proper subset of an n-
manifold M* with Int X 0. Furthermore, f is a local homeomorphism
of X into M™ such that (1) f(X) is connected and (2) there is some set U
in X open relative to X such that f~f(U)=U and f | Uis 1-1. Then f
is a homeomorphism.

COROLLARY 2. Suppose that X is a compact subset of E* with Int X
#0, X =closure of Int X, Int f(X) is connected, and that f is a light
open mapping of X into E* such that (1) f | Int X s locally 1-1, (2)
Ff(Int X)=Int f(X), (3) Bd f(X)=f(Bd X), and (4) there is U open
relative to X such that f~f(U) = U and f| U is 1-1. Then f is a homeomor-
phism.
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Light open mappings on n-cells. Now, we are ready to give an
affirmative answer to some spectal cases of Whyburn's conjecture.
Consider the following theorems.

THEOREM 2. Suppose that f is a light open mapping of an n-cell A
(unit ball in E") onto an n-cell B (another unit ball) such that
(1) f~Y(Bd 4)=Bd 4, (2) f(Bd 4)=Bd B, (3) dimension f(Sy) <n,
(4) B—f(Sy) is connected, and (5) there is V in B open relative to B
such that f|f~2(V) is 1-1. Then f is a homeomor phism.

Theorem 2 is actually a corollary of Theorem 1.

THEOREM 3. Suppose that f is a light open mapping of an n-cell A
(unit ball in E») onto an n-cell B such that (1) f~f(Bd A)=Bd 4,
(2) f(Bd A)=Bd B, (3) f| Sy is 1-1, and (&) for each component C of
B—f(Sy), there is V in C open relative to B such that f|f~1(V) is 1-1.
Then f is a homeomorphism.

Proor. Clearly f (Int A)=Int B. Since B is locally connected,
there are at most a countable number of components Cy, Cs, G, - - -,
of B—f(Sy). For each 1, f~1(C;) is connected. Denote it by K. Further-
more, f(K;)=C..

Now, f| K; is locally 1-1. Also, f(K:)=C; where D denotes the
closure of D, and f~!(C.) =K,. It follows that f(Bd K,)=Bd f(X.),
f(Int ;) =Int f(K,), and f| K is a light open mapping of K; onto C..

Apply Corollary 2 where K; replaces X. Thus, f | K; is a homeo-
morphism. Let S=U; K;. Each point of f(S;) is a limit point of
B—f(Sy). Thus, B=U;, C.. It follows that f(:S) =B and that f|Sis a
homeomorphism of S onto B. We conclude that S=4 and that fisa
homeomorphism.

Questions. Suppose that condition (3), namely f | Sy is 1-1, is
omitted from the hypothesis of Theorem 3. Is the resulting theorem
true? Condition (3) may be weakened slightly as indicated in Theo-
rem 4 below. Suppose that f is a light open mapping of an n-cell 4
onto an n-cell B. Does f(Sy) contain an open set? This question has
remained unsolved for several years (cf. [1], [2], [3]). If condition
(3) that f(S;) fails to contain an open set is omitted from Theorem 1,
is the resulting theorem true?

A generalization of Theorems 1 and 3. In Theorem 1, we require that
f(Sy) fail to separate f(X) while in Theorem 3, we permit a separation
but require that f I Sy be 1-1. This may be weakened further.

THEOREM 4. Suppose that X is a compact subset of a metric space M,
Bd X0, Int X0, and f is a light open mapping of X into M such
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that (1) f(Int X)=Int f(X), (2) f(Bd X)=Bd f(X), (3) of p&f(S))
where Sy is the singular set of f, then p is in the boundary of some com-
ponent of f(X)=f(Sy), (4) if C is a component of f(X)—f(Sy), then
FIFHCNF(Sy)] 4s 1-1, and (5) for each component K of f(X)—1(S)),
there is V in K open relative to f(X) such that f|f~1(V) is 1-1. Then fis a
homeomorphism.

A proof of Theorem 4 may be obtained in a manner similar to that
for Theorem 3.
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