TRIGONOMETRIC SERIES WITH POSITIVE PARTIAL SUMS

BY Y. KATZNELSON

Communicated by W. Rudin, April 12, 1965

The following problem was proposed by J. E. Littlewood about 15 years ago: Let $S(x) = \sum_{-\infty}^{\infty} c_n e^{inx}$ be a trigonometric series having the property that all its partial sums are positive. Is such a series necessarily a Fourier series? The purpose of this note is to show that such is not the case. It is well known that such a series must be a Fourier-Stieltjes series, and, as was shown by H. Helson, even the weaker condition

(1)
$$\int |S_n(x)| dx < \text{const.}, \qquad \left(S_n(x) = \sum_{-n}^n c_j e^{ijx}\right)$$

implies $c_n = o(1)$ (cf. Zygmund [2, p. 286]). It has been shown by Mary Weiss [1] that condition (1) does not imply that S(x) is a Fourier series.

LEMMA 1. There exists a constant $\alpha > 0$ such that for every $\epsilon > 0$ there exists a real valued trigonometric polynomial $P_{\epsilon}(x)$, with vanishing constant coefficient, having the properties:

- (i) $|\hat{P}(j)| < \epsilon$,
- (ii) $P_{\epsilon}(x) > \alpha$ on a set of measure $> \alpha$,
- (iii) The absolute values of the partial sums of $P_{\epsilon}(x)$ are less than 1/2.

PROOF. There exists a constant C such that $|(1/\sqrt{N})\sum_{1}^{N} e^{in \log n} e^{inx}| < C$ (cf. Zygmund [2, p. 199]). Take $N > \epsilon^{-2}$ and $P_{\epsilon}(x) = \operatorname{Re}((1/2C\sqrt{N})\sum_{1}^{N} e^{in \log n} e^{inx})$. Properties (i) and (iii) are obvious. Property (ii) follows from the fact that

$$||P_{\epsilon}||_{L^2} = \frac{1}{2\sqrt{(2)C_{\epsilon}}}, \qquad \sup |P_{\epsilon}(x)| \leq \frac{1}{2}.$$

We shall also need the following lemma:

LEMMA 2. Let $f_j(x)$ be real valued trigonometric polynomials satisfying:

- (a) $\hat{f}(0) = 0$, (b) $f_j(x) > \epsilon$ on a set of measure $> \alpha$, (c) $|f_j(x)| < 1/2$.
- Then, if $\lambda_j \rightarrow \infty$ fast enough, the product

(2)
$$\prod_{1}^{\infty} (1 - f_j(\lambda_j x))$$

converges weakly to a singular measure.

PROOF. Our first condition on the growth of λ_n is:

(3)
$$\lambda_n > 3$$
 times the degree of $\prod_{j=1}^{n-1} (1 - f_j(\lambda_j x))$

which implies that the constant term of $\prod_{1}^{n} (1-f_{j}(\lambda_{j}x))$ is 1 for all n. Since the partial products are positive, this implies that the (formal) product (2) is a Fourier-Stieltjes series of a positive measure μ . All that we have to do now is follow the lines of the proof of Theorem V.7.6, p. 209 in Zygmund [2]: We notice first that the partial products $\prod_{1}^{n} (1-f_{j}(\lambda_{j}x))$ are partial sums of $S(d\mu)$ followed by long gaps. As is well known, this implies $\prod_{1}^{n} (1-f_{j}(\lambda_{j}x)) \rightarrow \phi(x)$ a.e. where $\phi(x)dx$ is the absolutely continuous part of μ ; but if λ_{n} grows fast enough (b) implies that the only limit $\prod_{1}^{n} (1-f_{j}(\lambda_{j}x))$ can converge to a.e. is zero.

THE EXAMPLE. We take $S(x) = \prod_{1}^{\infty} (1 - P_{\epsilon_j}(\lambda_j x))$.

The P_{ϵ_i} are the polynomials defined in Lemma 1, with

(4)
$$0 < \epsilon_j < 2^{-j-2} \left\| \prod_{1}^{j-1} \left(1 - P_{\epsilon_k}(\lambda_k x) \right) \right\|_{\mathbf{A}}^{-1}$$

(where $||g||_{A} = \sum |\hat{g}(n)|$) and $\lambda_{j \to \infty}$ rapidly enough so that

(a) $\lambda_j > 3$ times the degree of $\prod_{1}^{j-1} (1 - P_{\epsilon_k}(\lambda_k x))$ and

(b) S(x) is the Fourier-Stieltjes series of a singular measure (Lemma 2).

From (a) above it follows that a partial sum of S(x) has necessarily the form $\prod_{i=1}^{q} (1-P_{\epsilon_{i}}(\lambda_{j}x))$ times a partial sum of $(1-P_{\epsilon_{q}+1}(\lambda_{q+1}x))$ plus two groups of terms each having the form

$$P_{\epsilon_{q+1}}(k)e^{ikx}$$
 times some terms from $\prod_{j=1}^{q} (1 - P_{\epsilon_j}(\lambda_j x)).$

By (iii) $\prod_{i=1}^{q} (1 - P_{\epsilon_i}(\lambda_j x)) > 2^{-q}$ and the partial sums of $(1 - P_{\epsilon_{q+1}}(\lambda_{q+1}x))$ are > 1/2 and by (4) the sum of the remaining terms is bounded by 2^{-q-2} , hence the partial sums of S(x) are positive.

References

1. M. Weiss, On a problem of Littlewood, J. London Math. Soc. 34 (1959), 217-221.

2. A. Zygmund, Trigonometric series, Vol. 1, University Press, Cambridge, 1959.

STANFORD UNIVERSITY