
KERNEL FUNCTIONS AND NUCLEAR SPACES 

BY JOSEPH WLOKA 

Communicated by A. E. Taylor, May 7, 1965 

As is well known, it is possible to represent any complete, locally 
convex space E as 

(1) E = proj Eai 
4-aeA 

where the Ea are Banach spaces. If the projective mappings of (1) are 
nuclear [2], E is called a nuclear space. For complete spaces, this 
definition is equivalent to Grothendieck's original one (see [2], [8]). 
It is possible to treat nuclearity for countable inductive limit spaces 
in a dual fashion : 

DEFINITION 1. £ is called an (LN)-space if 
(1) E = md+nEnt n = l, 2, • • • , where the En are Banach spaces, 
(2) the inductive mappings (imbeddings) are nuclear. 
We have the following theorem. 

THEOREM 1. Every (LN)-space is nuclear (in the sense of Grothen-
dieck). 

For regular inductive limit spaces the inverse theorem is also true 
(a space E = ind-» En is called regular, if every bounded set AC. E 
is already bounded in some £„0). 

THEOREM 2. If the regular space £ = ind^„ En, the En being Banach 
spaces, is nuclear, then it is an (LN)-space. 

In the above definitions and theorems, we can without loss of 
generality substitute Hilbert spaces Hn for the Banach spaces En and 
Hilbert-Schmidt mappings for nuclear mappings. 

In what follows we need the concept of a reproducing kernel. We 
quote the definition of Aronszajn [ l] , [ó]. Let H be a Hilbert space 
with scalar product ( , )*, consisting of functions ƒ (#) defined on some 
point set G. The function K(x, y), #££?, yCG is called a reproducing 
kernel if: 

(1) for every fixed y the function K(x, y) of x belongs to H, 
(2) K(xt y) has the reproducing property 

f(y) - (/(*), K(*> y))* for all ƒ G H. 

THEOREM 3. Let Hvt w = l, 2, • • • , be a sequence of Hilbert spaces 
with reproducing kernels Kn(x, y), where the scalar product in Hn is 
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given by 

(*, *)• = ƒ <t>(x)Wdyd<rn(x), 

the <rn being certain measures having their supports in some fixed set G 
and fulfilling the further condition 

(*, <t>)n à («, <t>)n+i for all <f>GHn (le. Hn QHn+l). 

If, for every m, there exists ann>m such that the condition 

(K) ƒ Km(x, x) d*n(x) < oo 

holds, then the space 

E = ind Hn *n> 

is an (LN) -space. 

REMARK. Because of Theorem 1, £ is then a nuclear space. The 
corresponding theorem for projective limit (1), is also true: in that 
case the condition (K) takes the form 

(KO I Kp(a)(x, x) daa(x) < oo, where a, 0 £ A and /3(a) > a. 

In preparation for using the above theorems to establish nuclearity 
for spaces of holomorphic functions, let us consider the Hubert space 
Hg={<f>\<l>(z) holomorphic in G, \\<t>\\^SSo\<t>(z)\2\g(z)\ Hz< oo }. 
Here G is some open set of the complex plane and g(z) is some con
tinuous (weight) function on G different from zero. It can be shown 
that Hg possesses a reproducing kernel Kg(z, w), continuous on G 
(this is a corollary of Hartogs' theorem), and satisfying the inequality 

a) Kfa^z-L-rr \g{z)\-*dz 
(irr2)2 J Jcfr.r) 

for every disc C(w, r) contained by G. 
Now let Gn be a sequence of open sets (bounded or not) in the 

complex plane such that 

Gn D Gn+i, n = 1, 2, • • • , 

and let gn, gn be continuous (weight) functions 5*0, defined on &. 
Let us take the Hilbert spaces Hn—{<t>\<l>(z) holomorphic on Gn, 
IMIk= / /<*j0l 2k»l *dz< °° }> a n d t h e Banach spaces 



722 JOSEPH WLOKA [September 

Mn= \4>\ <£(*) holomorphic on Gn, \\<l>\\mn = sup | <t>{z)gn
r (z)\< oo V . 

I *eGn ) 

We assume that the functions gn, gn' are such that 

—> 
Hn C 3n+i, n = 1, 2, • • • , 

Mn C Mn+i, n = 1, 2, • • • . 

Beside this we require gn, gn to have the following properties: 
For any n there exists an m(n) such that 

2 

<fo = 4̂ < oo . 

1. m{ri) —* oo if n—> co} m < 

(Nx) 

oJ g> 

For any ££G„ it is possible to find d 4 > 0 such that 

1. Cit, dt) C Gm, 

OM 2 . U ^ r r r u . w | - % r s s < „ , 
7ra, L «J J C(t,dt) J 

hold for all J(EG„ (w and m as in (Ni)). We can now state 

THEOREM 4. If the conditions (Ni) and (N2) are fulfilled, the equiv
alence 

E = ind Hn ^ ind Mn 
~-*n —m 

holdsj and E is an (LN)-space. 

REMARK. In proving the nuclearity we use essentially inequality (I). 
If for every n, gn = gn , these functions being holomorphic, and if the 

distances d(Gn+\, CGn) are all positive (when CGn = 0i d(Gn+i, CGn) 
is positive by convention) Theorem 4 follows from the single condi
tion (Ni). 

The corresponding theorem for projective limits (1) also holds 
under the following assumptions: 

Ga C Gp, Hp CHa, Mfi C M^ for a < fi 

(the definitions of Ha, Ma are analogous to those of Hn and Mn) 

ga, ga continuous and ^ 0 on U Ga, 
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(NO f f 4 
1. C(t, it) C Gfi, 

(NO „ | *«'(/)_ 

2 

(fe = A < 00 for all a £ 4̂ and some /5(a) > a, 

Ttf|2 L •/ ^ C(M«) J 

for some d«>0 and all / £ G a . 
The above theorems can be used to obtain information about the 

structure of Gelfand's W- and (S-distribution spaces, and to prove their 
nuclearity (for the definitions of these spaces, see [7] and [ l l ] ) . These 
theorems also imply that Silva's ultradistribution spaces [9], and 
the boundary distribution spaces of Köthe [5] and Tillmann [lO] 
are nuclear. As still another application, one can obtain simple proofs 
for the nuclearity of the spaces ®(G) considered by Grothendieck 
[3] and Köthe [4]. 

Proofs of these and other results will appear in [12]. 
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