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As is well known, it is possible to represent any complete, locally
convex space E as

1) E = proj E,,
—a€cd

where the E, are Banach spaces. If the projective mappings of (1) are
nuclear [2], E is called a nuclear space. For complete spaces, this
definition is equivalent to Grothendieck’s original one (see [2], [8]).
It is possible to treat nuclearity for countable inductive limit spaces
in a dual fashion:

DEFINITION 1. E is called an (LN)-space if

(1) E=ind., E,, n=1, 2, - - -, where the E, are Banach spaces,

(2) the inductive mappings (imbeddings) are nuclear.

We have the following theorem.

THEOREM 1. Every (LN)-space is nuclear (in the sense of Grothen-
dieck).

For regular inductive limit spaces the inverse theorem is also true
(a space E=ind., E, is called regular, if every bounded set A CE
is already bounded in some E,,).

THEOREM 2. If the regular space E=ind., E,, the E, being Banach
spaces, is nuclear, then it is an (LN)-space.

In the above definitions and theorems, we can without loss of
generality substitute Hilbert spaces H, for the Banach spaces E, and
Hilbert-Schmidt mappings for nuclear mappings.

In what follows we need the concept of a reproducing kernel. We
quote the definition of Aronszajn [1], [6]. Let H be a Hilbert space
with scalar product ( , )., consisting of functions f(x) defined on some
point set G. The function K(x, y), xEG, yEG is called a reproducing
kernel if:

(1) for every fixed y the function K(x, y) of x belongs to H,

(2) K(x, y) has the reproducing property

f&) = (f(x), K(z, 3)), forallf& H.

THEOREM 3. Let H,, n=1, 2, - - -, be a sequence of Hilbert spaces
with reproducing kernels K,(x, y), where the scalar product in H, is
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given by
6 n = [ 6 F@)do),
the o, being cerlain measures having their supports in some fixed set G
and fulfilling the further condition
-—)
(¢r ¢)n £ (¢; ¢)n+l fO’ all ] € H, (i-e- Hn C Hn+l)-

If, for every m, there exists an n>m such that the condition
(X) f Kon(, %) don(x) <

holds, then the space
E = ind H,,
—n

is an (LN)-space.

REMARK. Because of Theorem 1, E is then a nuclear space. The
corresponding theorem for projective limit (1), is also true: in that
case the condition (K) takes the form

(X f Kgoy(%, %) doa(x) < «©, where a,E A and Ba) > a.

In preparation for using the above theorems to establish nuclearity
for spaces of holomorphic functions, let us consider the Hilbert space
H,={$|$(s) holomorphic in G, [|¢]|2=/So|$()|?|g(2)|%dz< }.
Here G is some open set of the complex plane and g(z) is some con-
tinuous (weight) function on G different from zero. It can be shown
that H, possesses a reproducing kernel K,(z, w), continuous on G
(this is a corollary of Hartogs’ theorem), and satisfying the inequality

1
® gwos—=[[ |l

for every disc C(w, r) contained by G.
Now let G, be a sequence of open sets (bounded or not) in the
complex plane such that

GnDGMI, n=1,2’...,

and let g,, g be continuous (weight) functions 0, defined on G;.
Let us take the Hilbert spaces H,= {¢|¢(z) holomorphic on G,,
llgll%. = fS6.]#|2| ga| 2d2< = }, and the Banach spaces
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= {¢| ¢(2) holomorphic on G, ”qS”,:,. = sup | ¢(2)g (2) | < 00} .
20y
We assume that the functions g,, g, are such that

—)
H, C Hpya, n=12-.--,

—
M. C Mup, n=12 .-

Beside this we require g,, g to have the following properties:
For any #n there exists an m(n) such that

l.mm)—> o0 if n—o o, m< w,

(Ny) 2. f f g

For any tEG, it is possible to find d;>0 such that
1 C(t dl) C Gm,

(N2) 5 lgn(‘)l l:ffc(td)'gm(z)‘—zdz] S B< o,

hold for all tEG, (n and m as in (N;)). We can now state

dz—A<oo

THEOREM 4. If the conditions (N1) and (N3) are fulfilled, the equiv-
alence

= ind H, >~ ind M,

-n

holds, and E is an (LN)-space.

REMARK. In proving the nuclearity we use essentially inequality (I).

If for every n, g, =g, , these functions being holomorphic, and if the
distances d(Gn41, CG,) are all positive (when CG,= &, d(Grni1, CG,)
is positive by convention) Theorem 4 follows from the single condi-
tion (Nj).

The corresponding theorem for projective limits (1) also holds
under the following assumptions:

— —
Gy C G, HsC Hoyy Mg C My, fora<pg
(the definitions of H,, M, are analogous to those of H, and M,)

ga) g« continuous and #0 on U G,
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(N?) ff(,pggﬁ

1. C(t, dg) C Gp,

’ ’ 1/2
(N{) 2. .I_gﬁ(t_)l[ff |gg|‘2dz] <SB< w,
1l'dt2 C(t,d;)

for some d,>0 and all t€G..

The above theorems can be used to obtain information about the
structure of Gelfand’s W-and €-distribution spaces, and to prove their
nuclearity (for the definitions of these spaces, see [7] and [11]). These
theorems also imply that Silva’s ultradistribution spaces [9], and
the boundary distribution spaces of Kéthe [5] and Tillmann [10]
are nuclear. As still another application, one can obtain simple proofs
for the nuclearity of the spaces &(G) considered by Grothendieck
[3] and Kothe [4].

Proofs of these and other results will appear in [12].

2
dz = A < o foralla € 4 and some B(a) > a,
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