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If the set of linear inequalities 
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is consistent, there is an open convex polyhedral region of EN, any 
point of which represents a solution vector x for the system. Iterative 
methods for finding a solution point have been given by Agmon [l] 
and Novikoff [2], among others. 

If the set is inconsistent no such region exists. A generalization of 
the concept of solution is a collection of vectors #(1), x(2\ • • • , xi2k+1\ 
or "committee,n such that each inequality is satisfied by a majority 
of the members of the committee. This notion has application in pat­
tern recognition [3]. 

The set of inequalities is contradictory if two of the inequalities 
represent half spaces separated by the same plane. A simple geometric 
argument shows that a committee solution exists for any noncontra-
dictory set of homogeneous linear inequalities. The proof will be 
published elsewhere [4]. 
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