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It is well known that if Q is a domain of holomorphy in Cn then 
it is a Cousin I domain; it is also a Cousin II domain if and only if 
Ü2(Q, Z) =0. In this work we prove that some general classes of do­
mains which are not domains of holomorphy are both Cousin I and 
Cousin II domains. Recall that Ö is Cousin I (II) if and only if 
fl^O, 0)=O (iT^O, 0*)=0) where 0 is the sheaf of germs of holo-
morphic functions under addition and 0* is the sheaf of germs of 
nowhere-zero holomorphic functions under multiplication. If JET1(S2, Z) 
= 0 then «0 Cousin II" implies "Q Cousin I* and if fP(Qf Z) = 0 then 
"Q Cousin r implies «0 Cousin II.» 

In what follows we take n^3 since, for n = 2, Q is Cousin I if and 
only if Q is a domain of holomorphy [l] . 

DEFINITIONS. An open relatively compact set A in a complex mani­
fold X is called q-convex if A = {z; zÇzAo, <f>(z) <0} where A0 is a 
neighborhood of A, <j> is twice continuously differentiable in AQ, 
grad ^ ^ O o n ô i , and the Levi form on dA has at least w — q + 1 posi­
tive eigenvalues. If A and 5 are g-convex, BC.A, and if there exists 
a function <£(s, /) (zGi 0 , O^t^l) twice continuously differentiable in 
z such that the sets Dt= {z; zÇiAo, <t>(z, t) <0} are ^-convex and lie in 
A o and Do = A, Di = B, then we say that -4 and B are q-convex homo-
topic. Example: if A, B are strictly convex then they are 1-convex 
homotopic. 

Let Ku L\ be open convex sets in the Si-plane, 0£Li, LiQKi, and 
se t^ i = i£i\Zi. Let K'=K2X • • • XKn, L' = L2X • • • XLn be open 
convex generalized poly discs (Kj9 Lj lie in the Sy-plane) with 0£L ' , 
Z' C-K7- All the previous sets are taken to be bounded. Set Go = A\ XK'9 

G I = Ü : I X ( Ü : ' \ Z ' ) , G=GJÜGI. 

LEMMA 1. G is both Cousin I and Cousin II. 

The proof that G is Cousin I is a straightforward generalization of 
the proof of [7, Hilfsatz]. Thus, it remains to show that H2(G, Z) = 0. 

LEMMA 2. Hr(G, Z)=Qfor 0<r^2n. 
1 This work was partially supported by the Alfred P. Sloan Foundation and by 

NASA Grant NGR 14-007-021. 
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PROOF.2 Moving the points of Ki\Li and of Kr\L' inward along 
the rays from 0 we get a strong deformation retract of G into a set 
homeomorphic to N = SlXD^+1UD2

aXS^ where m = 2 « - l , SJand S? 
are unit ^-spheres, and Dv

a, D% are unit £-balls. The join S1 o Sm can 
be described by x cos t+y sin t, O^t^ir/2, where xG«S1, y(E.Sm. 
Introduce the function (#, <f>, f)-^((l, â), (U/TT, <j>)) which maps 
homeomorphically the set J- in S1 o Sm corresponding to 0 ^ ^ 7 r / 4 
onto SlXD™+l, where &, <j> are the angular coordinates of x, y. Sim­
ilarly we introduce a map of J+ (for which 7r /4^/^7r /2) onto 
•D2X5J\ Thus N is homeomorphic to S1 o Sm, and since the latter is 
known to be homeomorphic to Sm+2, the result follows. 

LEMMA 3. The envelope of holomorphy of G contains KiXK'. 

PROOF. Given ƒ holomorphic in G, for any f ÇzAiXK' we represent 
/(f) by Cauchy's formula, where the Zi-contour is composed of one 
part lying near dK\ and another "inner" part, say / , lying near dLi, 
and where the s rcontour, for j ^ 2 , is in Kj\Lj. Now notice that the 
integral over J vanishes. 

LEMMA 4. Let X be an open set in a complex manifold and let A, B 
be subsets of X n-convex homotopic, and B(ZA. Then any two Cousin 
II data in X\B which are equivalent in X\A are also equivalent in 
X\B. 

The proof is a rather obvious extension of [5, Satz 1, Al , A2] 
provided one employs a theorem of Lewy [4] (see also [3]) concern­
ing local analytic continuation across the boundary of each dDt. 

LEMMA 5. Let X be an open set in Cn and let L — L\X • • • XLn be a 
generalized polydisc which is open, convex and bounded, and LC.X. 
Then any Cousin II data (gp, Up) in X\L can be continued into X. 

PROOF. Let K = K\X • - • X X n be an open convex bounded gen­
eralized polydisc with LC.K, I C ^ and introduce G as in Lemma 1. 
Clearly G<ZX\L. Since G is Cousin II , there exists an ƒ holomorphic 
in G such that (ƒ, G) is equivalent (in G) to the given Cousin data. 
Continue ƒ to KxXK' (by Lemma 3). For each P in (KiXK')r\G we 
take the germ fP of ƒ in the neighborhood G of P . For P in (KiXK')\G 
we take a sufficiently small neighborhood Vp of P such that its inter­
section with X\L lies in G, and then take fp to be the germ of the 
continuation of/. We have thus continued the Cousin data into X. 

LEMMA 6. Lemma 5 remains true if L is any open, strictly convex and 
bounded set with C2 boundary, and LQX. 

1 I am indebted to Daniel Kahn for the proofs of this lemma and of Lemma 7. 
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PROOF. Let RÇzdL. We first wish to continue the data to a neigh­
borhood W oi R. Assume that Re(zi) = 0 is the tangent hyperplane to 
L a t R, tha t L lies in Re(si) < 0 , and that R is a t the origin. 

We apply a modified version of Lemmas 1-3 where G is defined 
differently, namely, Ai = {zi\ 0 <Re(zi) <d0, | Im(2i) | <a}, K% 
= {zi, — d<Re(zi) <d0, | lm(3i) | < a } , and follow the argument of 
Lemma 5. We then need to show tha t the data obtained by the con­
tinuation of ƒ agree with the given data in (X\L)C\W. This is done 
by extending the argument 3 of [5, p. 345]. However tha t argument 
is erroneous (since the existence of a smallest t* is not justified). In­
stead we construct a family of C2 hypersurfaces S(t) (1 ^t^2) with 
boundary in (Ki\A 1) X (K'\L') such that S(t), a t each of its points, 
is convex in a t least one tangential direction (in fact, we can take it 
convex in 2n — 1 independent directions), S(t) lies outside L if t>l, 
S ( l ) D ( X \ Z ) r W , and 5(2) CG. Then, by the proof of Lemma 4, we 
show tha t the set of t's such that a t all the points of S(T) (t<T^2) 
the two sets of data are equivalent, is both open and closed. Having 
continued the data to W, the argument C of [5, p. 343], combined 
with Lemma 4, completes the proof. 

DEFINITION. An w-convex subset A of XQCn is said to have the 
property (P) if it is w-convex homotopic to a set BZ)A ( S C I ) , and 
if there exists a convex set L such that A C.LC.LQB. 

THEOREM 1. Let X be an open set in Cn and let A be an n-convex 
subset of X satisfying the property (P). Then any Cousin II data in 
X\A can be continued into X. 

PROOF. Consider the given data V restricted to X\L. By Lemma 5 
there exists a continuation V' of the data to X. Since F, V' are equiv­
alent in X\B, they are also equivalent in X\A (by Lemma 4). 

Rothstein [5, Satz I*] stated a similar theorem for w = 3, replacing 
"w-convex" by "analytic polyhedron" and omitting the condition (P), 
but in his proof 2 there occurs a serious mistake. The same remark 
applied to his treatment of the first Cousin problem in [ó]. 

From Theorem 1 we get: 

THEOREM 2. Let X be a Cousin II domain in Cn and let A be an 
n-convex subset of X having the property (P). Then X\A is a Cousin 
II domain. 

LEMMA 7. Let X be an open set on a real n-dimensional differential 
manifold satisfying Hq(X, Z) = 0 for q = l, • • • , m (m<n), and let 
A be a contractible relatively compact subset of X with continuously 
differentiate boundary. Then i?*(X\Z, Z)=0for q = l, • • • , m. 
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PROOF. Write H«(N) for i?«(iV, Z). Since dA is differentiable, 
X\A can be deformed continuously to an open set B which contains 
dA. We have Hr(X\A)=Hr(B) for r^O. Since A is contractible, 
Hr(A) =0 if r>0 . Next, AC\B can be deformed continuously to dA 
and, therefore, Hr(Ar\B)=Hr{dA). By Lefschetz Duality Theorem 
[2], Hr(A, cL4)=0 if 0 ^ r < « , and from the exact sequence Hr(A) 
-*Hr(dA)->Hr(A , &4) we then infer that H'(dA) = 0; hence H'(AHB) 
= 0 if 0 <r < n. Noting that A C\B 5* 0, we can write down the Mayer-
Vietoris exact sequence Hr(X)->Hr(A) ®Hr(B)-+Hr(AC\B) and ob­
tain Hr(B)=0 if l^r^m. 

THEOREM 3. Let Xbea Cousin I domain in Cn and let A be an n-convex 
subset of X having the property (P). IfHq(X, Z) =Qforq = l, 2 and if A 
is contractiblet then X\A is a Cousin I domain. 

Indeed, X is Cousin II and, by Theorem 2, also X\A is Cousin II. 
Since, by Lemma 7, IP(X\Â, Z) = 0, X\I is Cousin I. 

COROLLARY. If X is a domain of holomorphy in C", if HQ(X, Z)=0 
for g = l, 2, and if A is as in Theorem 3, then X\J is both Cousin I 
and Cousin II. 

Theorems 1-3 extend to the case where instead of one hole A there 
is a finite number of holes. The results also extend to sets X on com­
plex manifolds, provided B (in (P)) lies in one coordinate patch. 

Added in proof. (I) Define "real 2g-convex homotopic" analogously 
to "g-convex homotopic" by requiring the manifolds to be strictly 
convex in at least n—q+1 complex directions of the tangent hyper-
planes. Theorems 1-3 remain true if the condition (P) is relaxed by 
taking L to be real 2(n — 1)-convex homotopic to a point. Indeed, modify 
the proof of Lemma 6 (L is strictly convex in z2l zz directions) taking 
Kj — Lj for j=4, • • - , n and, in the definition of Ai, e<Re(zi) <do. 
For fixed f £ W, f $ i , take S(t) to be 5-dimensional surfaces lying 
outside L, with zy = fy (j' = 4, • • • , w), f E5(J) for some t> 1, such that 
they are 1-convex. To construct S(t) take E> (j=l, 2) convex 4-di-
mensional surfaces on Re(si) = — j8y 03i<j82) and in G, and take 
4-dimensional surface F, on Re (zi) = —/Si, lying outside L such that 
its intersection Fa with Im (zi)= a is convex for all small a. Let 
E1

a = Ein{îm(zi) =<*} and take R* = (y, 0, • • • , 0) (?>()) outside L. 
5(2) is a convex cap with top 2?*, base E2, and passing through EK 
Deform E1 into F (by deforming El

a into Fa) and, correspondingly, 
deform the "meridians" issuing from R* to E2. S(t) is the deformation 
of 5(2) at stage t (1 ^ / < 2 ) . 
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(II) In [Math. Ann. 120 (1955), 96-138] Rothstein gave a proof 
of Theorem 1 with "w-convex" replaced by "(n —l)-convex" and 
with "(P)" replaced by "A is a star domain." His proof applies also 
to continuation of analytic sets, but our proof is much simpler. 
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