ON THE COUSIN PROBLEMS¹

BY AVNER FRIEDMAN

Communicated by F. Browder, June 7, 1965

It is well known that if Ω is a domain of holomorphy in \mathbb{C}^n then it is a Cousin I domain; it is also a Cousin II domain if and only if $H^2(\Omega, \mathbb{Z}) = 0$. In this work we prove that some general classes of domains which are not domains of holomorphy are both Cousin I and Cousin II domains. Recall that Ω is Cousin I (II) if and only if $H^1(\Omega, 0) = 0$ ($H^1(\Omega, 0^*) = 0$) where 0 is the sheaf of germs of holomorphic functions under addition and 0^* is the sheaf of germs of nowhere-zero holomorphic functions under multiplication. If $H^1(\Omega, \mathbb{Z}) = 0$ then " Ω Cousin II" implies " Ω Cousin I" and if $H^2(\Omega, \mathbb{Z}) = 0$ then " Ω Cousin I" implies " Ω Cousin II."

In what follows we take $n \ge 3$ since, for n = 2, Ω is Cousin I if and only if Ω is a domain of holomorphy [1].

DEFINITIONS. An open relatively compact set A in a complex manifold X is called q-convex if $A = \{z; z \in A_0, \phi(z) < 0\}$ where A_0 is a neighborhood of \overline{A} , ϕ is twice continuously differentiable in A_0 , grad $\phi \neq 0$ on ∂A , and the Levi form on ∂A has at least n-q+1 positive eigenvalues. If A and B are q-convex, $B \subset A$, and if there exists a function $\phi(z,t)$ ($z \in A_0$, $0 \le t \le 1$) twice continuously differentiable in z such that the sets $D_t = \{z; z \in A_0, \phi(z,t) < 0\}$ are q-convex and lie in A_0 and $D_0 = A$, $D_1 = B$, then we say that A and B are q-convex homotopic. Example: if A, B are strictly convex then they are 1-convex homotopic.

Let K_1 , L_1 be open convex sets in the z_1 -plane, $0 \in L_1$, $\overline{L}_1 \subset K_1$, and set $A_1 = K_1 \setminus \overline{L}_1$. Let $K' = K_2 \times \cdots \times K_n$, $L' = L_2 \times \cdots \times L_n$ be open convex generalized polydiscs $(K_j, L_j \text{ lie in the } z_j\text{-plane})$ with $0 \in L'$, $\overline{L}' \subset K'$. All the previous sets are taken to be bounded. Set $G_0 = A_1 \times K'$, $G_1 = K_1 \times (K' \setminus \overline{L}')$, $G = G_0 \cup G_1$.

LEMMA 1. G is both Cousin I and Cousin II.

The proof that G is Cousin I is a straightforward generalization of the proof of [7, Hilfsatz]. Thus, it remains to show that $H^2(G, \mathbb{Z}) = 0$.

LEMMA 2. $H^r(G, \mathbb{Z}) = 0$ for $0 < r \le 2n$.

¹ This work was partially supported by the Alfred P. Sloan Foundation and by NASA Grant NGR 14-007-021.

PROOF.² Moving the points of $\overline{K}_1 \backslash L_1$ and of $\overline{K}' \backslash L'$ inward along the rays from 0 we get a strong deformation retract of G into a set homeomorphic to $N = S_a^1 \times D_b^{m+1} \cup D_a^2 \times S_b^m$ where m = 2n-1, S_a^p and S_b^p are unit p-spheres, and D_a^p , D_b^p are unit p-balls. The join $S^1 \circ S^m$ can be described by x cos t+y sin t, $0 \le t \le \pi/2$, where $x \in S^1$, $y \in S^m$. Introduce the function $(\vartheta, \phi, t) \to ((1, \vartheta), (4t/\pi, \phi))$ which maps homeomorphically the set J_- in $S^1 \circ S^m$ corresponding to $0 \le t \le \pi/4$ onto $S_a^1 \times D_b^{m+1}$, where ϑ , ϕ are the angular coordinates of x, y. Similarly we introduce a map of J_+ (for which $\pi/4 \le t \le \pi/2$) onto $D_a^2 \times S_b^m$. Thus N is homeomorphic to $S^1 \circ S^m$, and since the latter is known to be homeomorphic to S^{m+2} , the result follows.

LEMMA 3. The envelope of holomorphy of G contains $K_1 \times K'$.

PROOF. Given f holomorphic in G, for any $\zeta \in A_1 \times K'$ we represent $f(\zeta)$ by Cauchy's formula, where the z_1 -contour is composed of one part lying near ∂K_1 and another "inner" part, say J, lying near ∂L_1 , and where the z_j -contour, for $j \ge 2$, is in $K_j \setminus \overline{L}_j$. Now notice that the integral over J vanishes.

LEMMA 4. Let X be an open set in a complex manifold and let A, B be subsets of X n-convex homotopic, and $B \subset A$. Then any two Cousin II data in $X \setminus \overline{B}$ which are equivalent in $X \setminus \overline{A}$ are also equivalent in $X \setminus \overline{B}$.

The proof is a rather obvious extension of [5, Satz 1, A1, A2] provided one employs a theorem of Lewy [4] (see also [3]) concerning local analytic continuation across the boundary of each ∂D_t .

LEMMA 5. Let X be an open set in \mathbb{C}^n and let $L = L_1 \times \cdots \times L_n$ be a generalized polydisc which is open, convex and bounded, and $\overline{L} \subset X$. Then any Cousin II data (g_P, U_P) in $X \setminus \overline{L}$ can be continued into X.

PROOF. Let $K = K_1 \times \cdots \times K_n$ be an open convex bounded generalized polydisc with $\overline{L} \subset K$, $\overline{K} \subset X$ and introduce G as in Lemma 1. Clearly $G \subset X \setminus \overline{L}$. Since G is Cousin II, there exists an f holomorphic in G such that (f, G) is equivalent (in G) to the given Cousin data. Continue f to $K_1 \times K'$ (by Lemma 3). For each P in $(K_1 \times K') \cap G$ we take the germ f_P of f in the neighborhood G of P. For P in $(K_1 \times K') \setminus G$ we take a sufficiently small neighborhood V_P of P such that its intersection with $X \setminus \overline{L}$ lies in G, and then take f_P to be the germ of the continuation of f. We have thus continued the Cousin data into X.

LEMMA 6. Lemma 5 remains true if L is any open, strictly convex and bounded set with C^2 boundary, and $\overline{L} \subset X$.

² I am indebted to Daniel Kahn for the proofs of this lemma and of Lemma 7.

PROOF. Let $R \in \partial L$. We first wish to continue the data to a neighborhood W of R. Assume that $Re(z_1) = 0$ is the tangent hyperplane to L at R, that L lies in $Re(z_1) < 0$, and that R is at the origin.

We apply a modified version of Lemmas 1-3 where G is defined differently, namely, $A_1 = \{z_1; 0 < \operatorname{Re}(z_1) < d_0, |\operatorname{Im}(z_1)| < \alpha\}, K_1$ $= \{z_1, -d < \text{Re}(z_1) < d_0, |\text{Im}(z_1)| < \alpha\}, \text{ and follow the argument of }$ Lemma 5. We then need to show that the data obtained by the continuation of f agree with the given data in $(X \setminus \overline{L}) \cap W$. This is done by extending the argument 3 of [5, p. 345]. However that argument is erroneous (since the existence of a smallest t^* is not justified). Instead we construct a family of C^2 hypersurfaces S(t) $(1 \le t \le 2)$ with boundary in $(K_1 \setminus A_1) \times (K' \setminus \overline{L}')$ such that S(t), at each of its points, is convex in at least one tangential direction (in fact, we can take it convex in 2n-1 independent directions), S(t) lies outside \overline{L} if t>1, $S(1) \supset (X \setminus \overline{L}) \cap W$, and $S(2) \subset G$. Then, by the proof of Lemma 4, we show that the set of t's such that at all the points of $S(\tau)$ $(t < \tau \le 2)$ the two sets of data are equivalent, is both open and closed. Having continued the data to W, the argument C of [5, p. 343], combined with Lemma 4, completes the proof.

DEFINITION. An *n*-convex subset A of $X \subset \mathbb{C}^n$ is said to have the property (P) if it is *n*-convex homotopic to a set $B \supset A$ $(\overline{B} \subset X)$, and if there exists a convex set L such that $\overline{A} \subset L \subset \overline{L} \subset B$.

THEOREM 1. Let X be an open set in \mathbb{C}^n and let A be an n-convex subset of X satisfying the property (P). Then any Cousin II data in $X\setminus \overline{A}$ can be continued into X.

PROOF. Consider the given data V restricted to $X \setminus \overline{L}$. By Lemma 5 there exists a continuation V' of the data to X. Since V, V' are equivalent in $X \setminus \overline{B}$, they are also equivalent in $X \setminus \overline{A}$ (by Lemma 4).

Rothstein [5, Satz I*] stated a similar theorem for n=3, replacing "n-convex" by "analytic polyhedron" and omitting the condition (P), but in his proof 2 there occurs a serious mistake. The same remark applied to his treatment of the first Cousin problem in [6].

From Theorem 1 we get:

THEOREM 2. Let X be a Cousin II domain in \mathbb{C}^n and let A be an n-convex subset of X having the property (P). Then $X\setminus \overline{A}$ is a Cousin II domain.

LEMMA 7. Let X be an open set on a real n-dimensional differential manifold satisfying $H^q(X, \mathbb{Z}) = 0$ for $q = 1, \dots, m$ (m < n), and let A be a contractible relatively compact subset of X with continuously differentiable boundary. Then $H^q(X \setminus \overline{A}, \mathbb{Z}) = 0$ for $q = 1, \dots, m$.

PROOF. Write $H^q(N)$ for $H^q(N, \mathbb{Z})$. Since ∂A is differentiable, $X \setminus \overline{A}$ can be deformed continuously to an open set B which contains ∂A . We have $H^r(X \setminus \overline{A}) = H^r(B)$ for $r \ge 0$. Since A is contractible, $H^r(A) = 0$ if r > 0. Next, $A \cap B$ can be deformed continuously to ∂A and, therefore, $H^r(A \cap B) = H^r(\partial A)$. By Lefschetz Duality Theorem [2], $H^r(A, \partial A) = 0$ if $0 \le r < n$, and from the exact sequence $H^r(A) \to H^r(\partial A) \to H^r(A, \partial A)$ we then infer that $H^r(\partial A) = 0$; hence $H^r(A \cap B) = 0$ if 0 < r < n. Noting that $A \cap B \ne \emptyset$, we can write down the Mayer-Vietoris exact sequence $H^r(X) \to H^r(A) \oplus H^r(B) \to H^r(A \cap B)$ and obtain $H^r(B) = 0$ if $1 \le r \le m$.

THEOREM 3. Let X be a Cousin I domain in \mathbb{C}^n and let A be an n-convex subset of X having the property (P). If $H^q(X, \mathbb{Z}) = 0$ for q = 1, 2 and if A is contractible, then $X \setminus \overline{A}$ is a Cousin I domain.

Indeed, X is Cousin II and, by Theorem 2, also $X \setminus \overline{A}$ is Cousin II. Since, by Lemma 7, $H^1(X \setminus \overline{A}, \mathbf{Z}) = 0$, $X \setminus \overline{A}$ is Cousin I.

COROLLARY. If X is a domain of holomorphy in \mathbb{C}^n , if $H^q(X, \mathbb{Z}) = 0$ for q = 1, 2, and if A is as in Theorem 3, then $X \setminus \overline{A}$ is both Cousin I and Cousin II.

Theorems 1-3 extend to the case where instead of one hole A there is a finite number of holes. The results also extend to sets X on complex manifolds, provided B (in (P)) lies in one coordinate patch.

Added in proof. (I) Define "real 2q-convex homotopic" analogously to "q-convex homotopic" by requiring the manifolds to be strictly convex in at least n-q+1 complex directions of the tangent hyperplanes. Theorems 1-3 remain true if the condition (P) is relaxed by taking L to be real 2(n-1)-convex homotopic to a point. Indeed, modify the proof of Lemma 6 (L is strictly convex in z_2 , z_3 directions) taking $K_j = L_j$ for $j = 4, \dots, n$ and, in the definition of $A_1, \epsilon < \text{Re}(z_1) < d_0$. For fixed $\zeta \in W$, $\zeta \notin L$, take S(t) to be 5-dimensional surfaces lying outside L, with $z_j = \zeta_j$ $(j = 4, \dots, n)$, $\zeta \in S(t)$ for some t > 1, such that they are 1-convex. To construct S(t) take E^{j} (j=1, 2) convex 4-dimensional surfaces on $Re(z_1) = -\beta_i$ ($\beta_1 < \beta_2$) and in G, and take 4-dimensional surface F, on $Re(z_1) = -\beta_1$, lying outside L such that its intersection F_{α} with Im $(z_1) = \alpha$ is convex for all small α . Let $E_{\alpha}^{1} = E^{1} \cap \{ \operatorname{Im}(z_{1}) = \alpha \}$ and take $R^{*} = (\gamma, 0, \dots, 0)(\gamma > 0)$ outside L. S(2) is a convex cap with top R^* , base E^2 , and passing through E^1 . Deform E^1 into F (by deforming E^1_{α} into F_{α}) and, correspondingly, deform the "meridians" issuing from R^* to E^2 . S(t) is the deformation of S(2) at stage t $(1 \le t < 2)$.

(II) In [Math. Ann. 120 (1955), 96–138] Rothstein gave a proof of Theorem 1 with "n-convex" replaced by "(n-1)-convex" and with "(P)" replaced by "A is a star domain." His proof applies also to continuation of analytic sets, but our proof is much simpler.

REFERENCES

- 1. H. Behenke and K. Stein, Analytische Funktionen mehrerer Veränderlichen zu vorgegeben Null- und Polstellenflächen, Jber. Deutsch. Math.-Verein. 47 (1937), 177-192.
 - 2. S. C. Cairns, Introductory topology, Ronald Press, New York, 1961.
- 3. L. Hörmander, Lectures on functions of several complex variables, Van Nostrand, 1965 (to appear).
- 4. H. Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math. 64 (1956), 514-522.
- 5. W. Rothstein, Die Fortsetzung vier- und höherdimensionaler analytischer Flächen des R_{2n} (n≥3) (Cousin Verteilung 2. Art.), Math. Ann. 121 (1950), 340-355.
- 6. W. Rothstein, Über die Fortsetzung von Verteilungen meromorpher Ortsfunktionen in R⁶, Math. Ann. 124 (1952), 303-308.
- 7. G. Scheja, Riemannsche Helbarkeitssätze für Cohomologieklassen, Math. Ann. 144 (1961), 345-360.

NORTHWESTERN UNIVERSITY