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Let f(z) = 23iT-o anZn be holomorphic with radius of convergence 
R (0<R^ oo), and let pt(r) denote the maximum term and v(r) the 
central index of f{z). By definition, for r > 0 , fx(r) =max{ | a n | r n | n 
= 0, 1, 2, • • • } and so fx(r) = | a„(r) | r"

(r). We shall assume that 
fx(r) —>oo as r-+R and f{z) is not a polynomial. In this note we give a 
technique for comparing f{z) with its maximum term which shows 
that, for certain functions ƒ (z) which are of very slow growth, or whose 
power series have wide gaps, ƒ(z) has no finite asymptotic values. Our 
result is to be compared with Wiman's theorem [l, Chapter 3], [5]: 
lîf(z) is an entire function of order p < | then ƒ(z) has no finite asymp
totic values. However, the class of functions for which we show the 
nonexistence of finite asymptotic values is different from that of 
Wiman ; in particular we allow the functions to have a finite radius of 
convergence. 

Let z = reie and define 

»(reie) = /x(r)eiv^9 

for r>0 and O^0<27r. Then JX(Z) is a complex extension of fx(r) ; it is 
piecewise continuous, but has discontinuities where ^ ( | s | ) is discon
tinuous. 

Let y(f) be a (continuous) receding curve such that |Y(/)|—>R as 
t—> oo . Then y it) is an asymptotic path oîf(z) if as t—» oo ,f(y(i)) tends to 
a limit co, called an asymptotic value; analogously with this definition 
we shall call7(/) a fi-asymptotic path Hf(y(t))/n(y(f)) tends to a limit 
o) as /—> oo, and we say that œ is a fj,-asymptotic value. For example, e* 
has /i-asymptotic value oo along the positive real axis, but has /x-
asymptotic value 0 along any path to oo in any angle which excludes 
the positive real axis. The following theorem is obvious, since /x(r) 
— * 0 0 . 

THEOREM 1. If y it) is an asymptotic path of f{z) with finite asymp
totic value, then y{t) is a jx-asymptotic path of f(z) with jx-asymptotic 
value 0. 

Next we investigate some situations in which f{z) has no /A-asymp-
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totic values. Without loss of generality assume a05^0. Let {p(w)} be 
the sequence of jump points of v(r)f counting multiplicity. Since 
p(r)—>oo as r—*R, p(n)-->R as n—• «>. We denote by {tik} the range 
of v(r)t so that v(p(nk)) =#*, and we define wo = 0. Then 0<p(nk) 
<p(nk+l) = - • • =p(w*+i)< 

Explicitly 

We define 

_ . . J 1 /0»*-n*-l) 
p(Wjfc) = 

.. Pfafc+l) 
£ = lim sup y 

t-oo p(nk) 
S = lim sup (nk+! - nk), 

$) r sup (p(m+i)\ 
> = hm (ffc+i - «*) log < > , 

0; *-•« mf t p(nk) ) 
H\ sup /P(»IH-I)\ 
1 = lim (nA ~ w*-i) log < > . 
£; t-*«inf t p(wA) ; 

The proofs of the following theorems are given in [2], [3], and [4]. 

THEOREM 2.IfL>l and S< «>, then f (z) has no p,-asymptotic values. 
(The hypothesis L>\ implies that f (z) is a transcendental entire func
tion.) 

THEOREM 3. Suppose that f {z) has the form f (z) = X)*°-o ^nkz
nk where 

{nk} is the range of v(r). If any of the conditions ( l)-(4) hold, then 
f(z) has no p.-asymptotic values. 

(1) 
(2) 

(3) 

(4) 

# = E = » , £ > 0. 
£ = $ = » , 4>> 0. 

CO 1 

A-i w*+i — nk 

CO 1 

THEOREM 4. Suppose that f (z) has the form 

c(£)zn* 

< oo, 0 = oo, £ > 0. 

< oo, f = oo, < £ > 0 . 

ƒ(*) « €(0) + Z 
A»I p(l) • • • p(nk) 
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Assume | e(k) | = 1 and e(k) has period h where h is a positive inte
ger. If 0 <<t> =<!> < 00 and 0 <£ = S < °°, then f(z) has no jti-asymptotic 
values. 

Theorem 1, combined with Theorems 2, 3 and 4, yields 

THEOREM 5. If the hypotheses of Theorems 2, 3, or 4 are satisfied, 
then f(z) has no finite asymptotic values. 

EXAMPLES. Each of the following functions has no finite asymptotic 
values: 

* zh exp iak A z**"1 exp iak 

~ \<i/2)*(*+i) ' à T(aph + 1) ' 

* g** exp fa» A gfeP 

è î {(£ + X) log ƒ>}**' è î T(ak*> + 1) ' 
60 zkQ °° / ^fcj9\ 

1 + ^77TTT7i \v' a n d I^Pl"^")2**"1' 
Jfe-l { (* + X)l0g$l* A-l \ /? / 

where X > 1 , a > 0 , 0<]8<1 , 0^ajfc<27r, />isan integer greater than 1, 
and q is an integer greater than 2. 
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