ASYMPTOTIC VALUES OF HOLOMORPHIC FUNCTIONS OF IRREGULAR GROWTH

BY ALFRED GRAY AND S. M. SHAH ${ }^{1}$
Communicated by Maurice Heins, May 3, 1965

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be holomorphic with radius of convergence $R(0<R \leqq \infty)$, and let $\mu(r)$ denote the maximum term and $\nu(r)$ the central index of $f(z)$. By definition, for $r>0, \mu(r)=\max \left\{\left|a_{n}\right| r^{n} \mid n\right.$ $=0,1,2, \cdots\}$ and so $\mu(r)=\left|a_{\nu(r)}\right| r^{\nu(r)}$. We shall assume that $\mu(r) \rightarrow \infty$ as $r \rightarrow R$ and $f(z)$ is not a polynomial. In this note we give a technique for comparing $f(z)$ with its maximum term which shows that, for certain functions $f(z)$ which are of very slow growth, or whose power series have wide gaps, $f(z)$ has no finite asymptotic values. Our result is to be compared with Wiman's theorem [1, Chapter 3], [5]: If $f(z)$ is an entire function of order $\rho<\frac{1}{2}$ then $f(z)$ has no finite asymptotic values. However, the class of functions for which we show the nonexistence of finite asymptotic values is different from that of Wiman; in particular we allow the functions to have a finite radius of convergence.

Let $z=r e^{i \theta}$ and define

$$
\mu\left(r e^{i \theta}\right)=\mu(r) e^{i \nu(r) \theta}
$$

for $r>0$ and $0 \leqq \theta<2 \pi$. Then $\mu(z)$ is a complex extension of $\mu(r)$; it is piecewise continuous, but has discontinuities where $\nu(|z|)$ is discontinuous.

Let $\gamma(t)$ be a (continuous) receding curve such that $|\gamma(t)| \rightarrow R$ as $t \rightarrow \infty$. Then $\gamma(t)$ is an asymptotic path of $f(z)$ if as $t \rightarrow \infty, f(\gamma(t))$ tends to a limit ω, called an asymptotic value; analogously with this definition we shall call $\gamma(t)$ a μ-asymptotic path if $f(\gamma(t)) / \mu(\gamma(t))$ tends to a limit ω as $t \rightarrow \infty$, and we say that ω is a μ-asymptotic value. For example, e^{2} has μ-asymptotic value ∞ along the positive real axis, but has μ asymptotic value 0 along any path to ∞ in any angle which excludes the positive real axis. The following theorem is obvious, since $\mu(r)$ $\rightarrow \infty$.

Theorem 1. If $\gamma(t)$ is an asymptotic path of $f(z)$ with finite asymptotic value, then $\gamma(t)$ is a μ-asymptotic path of $f(z)$ with μ-asymptotic value 0.

Next we investigate some situations in which $f(z)$ has no μ-asymp-

[^0]totic values. Without loss of generality assume $a_{0} \neq 0$. Let $\{\rho(n)\}$ be the sequence of jump points of $\nu(r)$, counting multiplicity. Since $\nu(r) \rightarrow \infty$ as $r \rightarrow R, \rho(n) \rightarrow R$ as $n \rightarrow \infty$. We denote by $\left\{n_{k}\right\}$ the range of $\nu(r)$, so that $\nu\left(\rho\left(n_{k}\right)\right)=n_{k}$, and we define $n_{0}=0$. Then $0<\rho\left(n_{k}\right)$ $<\rho\left(n_{k}+1\right)=\cdots=\rho\left(n_{k+1}\right)<\cdots$.

Explicitly

$$
\rho\left(n_{k}\right)=\left|\frac{a_{n_{k-1}}}{a_{n_{k}}}\right|^{1 /\left(n_{k-n k-1}\right)} .
$$

We define

$$
\begin{aligned}
& L=\underset{k \rightarrow \infty}{\lim \sup } \frac{\rho\left(n_{k+1}\right)}{\rho\left(n_{k}\right)}, \\
& S=\limsup _{k \rightarrow \infty}\left(n_{k+1}-n_{k}\right), \\
& \left.\begin{array}{l}
\Phi \\
\phi
\end{array}\right\}=\lim _{k \rightarrow \infty} \sup \left(n_{k+1}-n_{k}\right) \log \left\{\frac{\rho\left(n_{k+1}\right)}{\rho\left(n_{k}\right)}\right\}, \\
& \underset{\xi}{\boldsymbol{Z}}\}=\lim _{k \rightarrow \infty} \sup _{\inf }\left(n_{k}-n_{k-1}\right) \log \left\{\frac{\rho\left(n_{k+1}\right)}{\rho\left(n_{k}\right)}\right\} \text {. }
\end{aligned}
$$

The proofs of the following theorems are given in [2], [3], and [4].
Theorem 2. If $L>1$ and $S<\infty$, then $f(z)$ has no μ-asymptotic values. (The hypothesis $L>1$ implies that $f(z)$ is a transcendental entire function.)

Theorem 3. Suppose that $f(z)$ has the form $f(z)=\sum_{k=0}^{\infty} a_{n_{k}} z^{n_{k}}$ where $\left\{n_{k}\right\}$ is the range of $\nu(r)$. If any of the conditions (1)-(4) hold, then $f(z)$ has no μ-asymptotic values.

$$
\begin{align*}
& \phi=\Xi=\infty, \xi>0 \tag{1}\\
& \xi=\Phi=\infty, \phi>0
\end{align*}
$$

$$
\begin{align*}
& R=\infty, \quad \sum_{k=1}^{\infty} \frac{1}{n_{k+1}-n_{k}}<\infty, \quad \phi=\infty, \quad \xi>0 \tag{3}\\
& R=\infty, \quad \sum_{k=1}^{\infty} \frac{1}{n_{k+1}-n_{k}}<\infty, \quad \xi=\infty, \quad \phi>0 \tag{4}
\end{align*}
$$

Theorem 4. Suppose that $f(z)$ has the form

$$
f(z)=\epsilon(0)+\sum_{k=1}^{\infty} \frac{\epsilon(k) z^{n_{k}}}{\rho(1) \cdots \rho\left(n_{k}\right)}
$$

Assume $|\epsilon(k)|=1$ and $\epsilon(k)$ has period h where h is a positive integer. If $0<\phi=\Phi<\infty$ and $0<\xi=\boldsymbol{\Xi}<\infty$, then $f(z)$ has no μ-asymptotic values.

Theorem 1, combined with Theorems 2, 3 and 4, yields
Theorem 5. If the hypotheses of Theorems 2, 3, or 4 are satisfied, then $f(z)$ has no finite asymptotic values.

Examples. Each of the following functions has no finite asymptotic values:

$$
\begin{array}{cr}
\sum_{k=0}^{\infty} \frac{z^{k} \exp i \alpha_{k}}{\lambda^{(1 / 2) k(k+1)}}, & \sum_{k=0}^{\infty} \frac{z^{p k-1} \exp i \alpha_{k}}{\Gamma\left(\alpha p^{k}+1\right)}, \\
\sum_{k=0}^{\infty} \frac{z^{p k} \exp i \alpha_{k}}{\{(k+\lambda) \log p\}^{p^{k}}}, & 1+\sum_{k=1}^{\infty} \frac{z^{k^{p}}}{\Gamma\left(\alpha k^{p}+1\right)}, \\
1+ & \sum_{k=1}^{\infty} \frac{z^{k^{q}}}{\{(k+\lambda) \log q\}^{k^{q}}}, \\
\text { and } & \sum_{k=1}^{\infty} \exp \left(\frac{p^{k \beta}}{\beta}\right) z^{p k-1},
\end{array}
$$

where $\lambda>1, \alpha>0,0<\beta<1,0 \leqq \alpha_{k}<2 \pi, p$ is an integer greater than 1 , and q is an integer greater than 2.

References

1. R. P. Boas, Entire functions, Academic Press, New York, 1954.
2. Alfred Gray and S. M. Shah, Holomorphic functions with gap power series, Math Z. 86 (1965), 375-394.
3. -, Asymptotic values of a holomorphic function with respect to its maximum term, Pacific J. Math. (to appear).
4. -, Holomorphic functions with gap power series. II, J. Math. Anal. Appl. (to appear).
5. G. Valiron, Integral functions, Chelsea, New York, 1949.

University of California, Berkeley and University of Kansas

[^0]: ${ }^{1}$ The work of this author was supported by NSF grant GP-4311.

