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For an ordinal a, let RS(a), the restricted second order theory of 
[a, < ], be the interpreted formalism containing the first order theory 
of [a, < ] and quantification on monadic predicate variables, ranging 
over all subsets of a. For a cardinal 7, RS(a, 7) is like RS(a), except 
that the predicate variables are now restricted to range over subsets 
of a of cardinality less than 7. <o=co0 andcoi denote the first two infinite 
cardinals. In this note I will outline results concerning RS(ÛÎ, co0), 
which were obtained in the Spring of 1964 (detailed proofs will appear 
in [8]), and the corresponding stronger results about RS(a, wi), 
which were obtained in the Fall of 1964. 

The binary expansion of natural numbers can be extended to 
ordinals. If x<2a, let <f>x be the finite subset {uif • • • , un) of a, 
given by x = 2ul+ • • • +2"», # » < • • • <U\. <f> is a one-to-one map 
of 2a onto all finite subsets of a. Let Exy stand for (Bu) [# = 2MAw 
£<fcy], and note that the algorithm i+j = s, for addition in binary 
notation can be expressed in RS(a, co0). I t now is easy to see that the 
first order theory FT[2 a , + , E] is equivalent to RS(a, co0), in the 
strong sense that the two theories merely differ in the choice of prim
itive notions; the binary expansion <j> yields the translation. Similarly, 
RS(a, 7) can be reinterpreted as a first order theory. We will state 
our results in one of the two forms, and leave it to the reader to trans
late. 

THEOREM 1. For any a, there is a decision method f or truth of sen
tences in RS(a, co0). The same sentences are true in RS(a, co0) and 
RS(0j coo), if and only if, a = ]3<cow or else a, j8^ww and have the same 
o)~tail. 

If a = z+o)v+cuncn+ • • • +o)°co, y^co, then z+œy is called the co-
head of a, and conc»+ • • • +o)°c0 is called the co-tail of a. 

THEOREM 2. For any ordinals (3>a>œ<a, [2^, + , E] is an elementary 
extension of [2a, + , £ ] , if and only if, a and j8 have the same ca-tail. The 
elementary embedding is then given by h(2a0x+y) =2^x+y, whereby 
x<2T, y<2a0, r is the common co-tail of a and /3, a0 and j30 are respec
tively the co-heads of a and /?. 
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Foundation. 
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Let a=a0+T^o)u
f where a0 is the co-head and r is the co-tail of a. 

From Theorem 2 one easily shows: the ordinals definable in 
FT[2«, + , E] (in FT[2«, + ] ) are those of form 2a*x+y, whereby 
x<2T and y<2^aK Actually, Theorems 1 and 2 are but samples of 
corollaries to Theorem 3, which completely describes the relations 
on ordinals definable in FT[2*, + , £ ] . 

The results on definability of individuals in FT [coa, + ] have been 
obtained earlier by A. Ehrenfeucht [6]. His methods are quite differ
ent; a lucid presentation of this work occurs in [3]. In [3] and [4] it 
is stated that Ehrenfeucht also knew a decision method for FT [coa, + ]. 
However, it seems that nobody has checked out these ideas. The first 
published proof of the decidability of FT[co, + , E], i.e., of RS(co, co) 
occurs in [ l ] , and a similar one in [7]. These are both based on my 
conjecture that RS(co, co) is just strong enough to express the behavior 
of finite automata. 

The key to the understanding of RS(a, co0) is a natural extension of 
deterministic finite-state recursions to the transfinite. Let I (input 
states) and S (internal states) be finite sets. An automaton 21 on ƒ, S 
consists of an element A £ S (initial state) a map H: S XI—*S, a map 
U: 2s—>S, and a subset OQS (the output). Let sup«* (ft) stand for the 
set of all values which the function r takes on cofinal to x, i.e. 
FGsupt<x(rO- = - ( V z ) ; ( 3 0 f [ ^ = ^ ] . [A, H, U] determines recur
sively an operator s[ot a] =f i [o , a) from Ia to 5a + 1 , namely, 

so = A9 

s(x + 1) = H[sx, ix], 

sx = U\ sup (si) , x a limit. 

An input sequence i[o, a) is said to be accepted by 21, in case s a £ 0 . 
Extending the proofs given in [ l ] , one now shows, 

THEOREM 3. Let R(ht • • • , in) be a relation on finite predicates on a. 
R is definable in RS(a, co0) if and only if there is an automaton 21 such 
that R consists of those finite (ii, • • • , in) on a, for which the input 
signal i [o, a) is accepted by 21. 

In fact there are effective methods, (1) for the construction of 21 
from a defining formula S of R (synthesis), and (2) for the construc
tion of S from 21 (analysis). Theorems 1 and 2 now follow by in
vestigating the behavior of input-free automata. 

Let us now consider RS(or, coi). The decidability of RS(co0, coi), i.e., 
RS(co0) was proved in [2]. It is not difficult to extend the method used 
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in [2], replacing ordinary automata recursions by transfinite auto
mata. The result is, 

THEOREM 1'. For any countable ordinal a, RS(a) is decidable. For 
a</3<ù)i, RS(a) and i?S(/3) are equivalent if and only if either a=/3 
<cow or a, fi^co" and have the same co-tail. Furthermore, RS(a, coi) is 
decidable for any a. 

As in [2 ] we actually obtain a complete survey over definability in 
RS(a, coi). In particular, the analog to Theorem 2 holds. 

Define the a-behavior of an automaton 2Ï to be the set Bh(Sl, a) 
consisting of all input-signals i [,o a) which are accepted by %. Thus, 
the ct>-behaviors are the ordinary regular sets of finite automata 
theory. 

THEOREM 4. To any automaton 21 with input (i, j) one can construct 
an automaton S with input i, such that for any a^coi and any input-
signal i of length <at *££/&(£, a) • ss • ( sj) (i, j)Ç:Beh{%, a). 

For a=œ this is the well-known projection-lemma for behaviors of 
finite automata. The case a=co+l constitutes a significant improve
ment of the crucial Lemma 9 of [2], and has recently been obtained 
by R. McNaughton. His construction is very ingenious, and his S's 
are by far the most intricate finite automata this writer has seen in 
action. The extension to ot^coi is an exercise in handling ordinals. 
Using this improved form of Lemma 9, the definability result of [2] 
extends as follows, 

THEOREM 3'. To every RS-formula 2(ii, • • • , in) one can construct 
an automaton St, and to every automaton % with 2n-ary input (ii, • • •, in) 
one can construct an RS-formula 2(*i, • • • , in), such that for any 
a <coi the behavior Bh(%, a) is the relation defined by S in RS(a, <oi). 

The following problem remains unsolved: Is RS(coi) decidable? 
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