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It has been shown by Birkhoff [2], [3] that Hilbert’s projective
metric [4] may be applied to a variety of problems involving linear
mappings of a function space into itself. In this note we shall point
out that essentially the same metric may be applied to some nonlinear
mappings which frequently arise in dynamic programming [1].

Let X be some set, and let P denote the set of all nonnegative real-
valued functions which have domain X and are not identically zero.
We define an extended real-valued function 6 on PXP as follows:

00,0 = e[ (3 75) (222 35) |

In computing the ratios, we take Ol 0 to be 1, and a] 0 to be « if
a#0. It is easy to show that 0 is an extended pseudo-metric on P.
0(f, g) =0 implies that f=»Ag for some constant A>0. We say that
a subset P* of P is “metric” if 0 is an extended metric on P*. That is,
if for any f, gEP*, 0(f, g) =0 if and only if f=g.

Let L be a map of P into P. If

Lf(#) <s f(=)

su —— forall EP
,Eg Lg(x) zEI; g(x) fie

such that 0 <0(f, g) < » then we say L is “ratio reducing on P.” Note
that if L is ratio reducing on P it follows at once that 0(Lf, Lg)
<0(f, g) for all f, g& P such that 0<0(f, g) < .

Thus L is a contraction mapping with respect to the pseudo-metric
6. Similar definitions apply on any subset of P. Many linear trans-
formations have been shown [2], [3] to be ratio reducing (or at least
ratio nonincreasing). A family {L,} (A ranging over some set of
parameters A) is said to be “uniformly ratio reducing” if, given f, g,

LUE) o I® s iranae

sup sup
s€X Lx(g(x)) 2€X g(x)
where &;,,>0 may depend on f and g but does 7ot depend on A. Note
that if A is a finite set then the family {L,} is uniformly ratio reduc-
ing if each of its members is ratio reducing.

THEOREM. If the family {Lx:)\EA} is uniformly ratio reducing,
773
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then the transformation L' defined by
L} (f(x)) = sup Lx(f(x))
A€A

is ratio reducing. If in addition L\(g(x)) > 8,>0 for each g& P and all
NEA, then the transformation L* defined by

L(f(x)) = inf Ly(f(=))

1s also ratio reducing.

The proof of the theorem is by straightforward computation. To
illustrate the application of this theorem to dynamic programming,
let us consider a class of problems referred to as “equations of type
I11” [1, pp. 125-129]. Suppose we are confronted with a system which

may be in any one of N+41 states (call the states so, 51, - - -, Sw),
and we are trying to drive the system into state so. At each stage, we
begin by knowing a probability distribution p=(po, p1, * * +, ),

where p;=probability that the system is in state s;. We may either
observe the system (at a cost >0), or we may perform an operation
T on it which will alter the probability distribution in some way at
a cost ¢;>0 (¢=1, 2, - - -, n). Then if f(p) represents the expected
cost of driving the system into state s, given that it is initially “known”
to be in state s; with probability p;, we see that f must obey the func-
tional equation

N
*) £(p) = inf { 5 () + b, AT) + af}

where §; denotes the probability distribution which assigns probabil-
ity 1 to state s;.

THEOREM. There is at most one bounded positive solution to the equa-
tion (*).

ProOF. Let X be the set of all possible distributions over the N1
possible states with the exception of (1, 0, - - -, 0). This point (&)
is in the closure of X. Since the final operation on the system must be
an observation, we see that f(p) =b. If f is bounded, it immediately
follows that lim,.,, f(p) =b. Let us restrict our attention to the metric
subset P* of P consisting of bounded f such that lim,.3z, f(p) =b.

L)) = 3 pif(s) + b,

$=1

L'(f(?)) =f(T'P) + a;, i=1,2,.+,m,
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are all ratio-reducing on P*. Thus by our Theorem above

LU@) = _inf L)

is ratio-reducing on P*. Hence, if f and g are distinct elements of P*,
then 6(Lf, Lg) <0(f, g), which proves there can be at most one
bounded solution to f=Lf.

A similar method may be applied when the system may be in any
one of a continuum of states. Note that in addition to proving the
uniqueness of the solution (if any) to (*), the above argument shows
that if gEP*, and {L"g} contains a uniformly convergent subse-
quence, then {Lng} converges uniformly to the solution of (*).
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