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A caustic is an envelope of a family of rays of geometrical optics. 
At a caustic, the usual equations of geometrical optics are not valid. 
We give a formal asymptotic series, valid both near and away from a 
smooth caustic, which satisfies the differential equation exactly. In 
the case of high-frequency oscillations, the solution is represented in 
terms of the Airy function and its derivative. There is a more general 
formulation (corresponding to a progressing wave expansion) in 
which the solution is expanded in terms of solutions of the Tricomi 
equation. Our procedure can be applied to general linear hyperbolic 
or time-reduced partial differential equations. The coefficients in our 
expansion are nearly the same as the coefficients which appear in 
ordinary geometrical optics; the only essential difference is that a 
factor which is singular at the caustic has been removed. Our termi­
nology is explained in R. Courant, Methods of mathematical physics, 
Vol. II, Ch. VI. 

In order to illustrate our procedure, we consider the reduced wave 
equation Aw+fe2w = 0, and we give only the leading term in the ex­
pansion. All of the essential features are illustrated in this special 
problem. We write the first term as 

(1) «(*) = exp(ikd(x)) ÏA(-k*»p(x))g(x) + ~ A'(-k*»p(x))h(x)]. 

Here A denotes the Airy function ; we have 

(2) A"(t) = M(0, 

and 

(3) A'"(t) = tA' + A(t). 

The functions 0, p, g and h are determined below. The caustic will be 
obtained by setting p(x) = 0. Applying the differential operator, using 
(2) and (3) and collecting terms, we obtain 

1 The research in this paper was supported by the National Science Foundation 
under grant No. GP-3668. 
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e-ikd(Au + k*u) = [k2Ag + ik*t*A'h][l - (V0)2 - p(Vp)*] 

+ [~2ik*'*A'g + 2kA'zA"h][Vd-Vp] 

+ ikA[2W-Vg + ABg + 2pVp-VA + pAph + (Vp)2A] 

- k*izA'[2Vp- Vg + Apg + 2V0- VA + A0A] 

+ AAg + — A'Ah. 

The terms of highest order vanish if we set 

(4) i - (vey - p(vPy = o, 
(5) V0-Vp = O. 

As we shall see, equations (4) and (5) are equivalent to the eikonal 
equation. The terms of next lowest order vanish if we set 

(6) 2V0- Vg + ABg + 2pVp- Vh + pAph + (Vp)2A = 0, 

(7) 2Vp- Vg + Apg + 2V0- VA + A0A = 0. 

The remainder AAg + (iA'/klfz)Ah can be absorbed into equations 
analogous to (6) and (7) for the terms of next highest order, and so 
forth. 

In order to satisfy (4) and (5), let <£+ and <j>- be the phases given by 
geometrical optics near the caustic. They satisfy (V<£±)

2 = 1. We define 
0, \[/, and p by 

(8) 0(x) = §(<*>+ + * - ) , 

(9) *(*) = * ( * . - * . ) , 

(10) p(x) = (#) 2 /3 . 

I t follows that 0 and p satisfy (4) and (5). The caustic, where <f>+ =#_ , 
is obtained by setting p(x) = 0 . It can be shown that if the caustic is 
smooth, 0(#) and p{x) are regular functions of x. Equations (4) and 
(5) can also be solved directly by the method of characteristics. The 
characteristics of the system (4), (5) are the rays of geometrical optics. 

In order to compare our equations (6) and (7) with the transport 
equation of geometrical optics, we define 

(11) a± = g ± Vph. 

Forming the sum of (6) ± Vp (7), we obtain 

(12) 2(V0 ± ^pVp)-Va± + (AS ± VpAp)a± = 0, 

or, using (8)-(10), 
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(13) 2V0±- Va± + l A0± + j a± = 0. 

Equation (13) differs from the transport equation of geometrical 
optics only in the term ± (V^)2/3^. Thus a±=pll*b±, where b± is the 
amplitude given by geometrical optics. This additional factor makes 
a± bounded at the caustic. 

To complete the identification of our approximate solution with 
geometrical optics, using (11) and the asymptotic expansion of the 
Airy function for fe2/3p^>0, if p > 0 , we obtain 

(14) u ~ 2v>*'*y" [exp ̂ H+ + ?)a+ "exp (***" " T ) a~] ' 
Thus, on the illuminated side of the caustic, our approximation coin­
cides with the one given by geometrical optics. The outgoing ( + ) and 
incoming ( —) parts of (14) are connected by the requirement, from 
(11), that a + = a _ at the caustic. The presence of the terms ±iir/4 in 
the exponents of (14) gives rise to the well-known phase shift of T/2 
after a wave passes through the caustic. 

I t can be seen from (12) that a+ and a_ are regular functions of 0 
and Vp> which implies that g and h are regular functions of x. If the 
caustic is analytic, the functions 0, p, g and h may be extended to the 
shaded region, where p < 0 ; in this case the asymptotic behavior of 
the Airy function for —fe2/3p}>>0 shows that our solution has an ex­
ponential decay given by exp( — k\(— p)3/2). We may conjecture a 
similar result in the neighborhood of a nonanalytic caustic. 

A more general expansion is obtained in the form 

«(*)-Z[^(*,p)/+^(«,p)*yL 
y-o 

where dU'+l/d6= U\ and 
lfpp(6, p) = plf99(fi, p), 

i.e., UJ' satisfies the Tricomi equation. The calculations are virtually 
identical with the preceding ones. The more general expansion en­
ables us to solve problems involving propagation of discontinuities 
or other singularities in space-time. 

Asymptotic expansions near a smooth caustic, which are similar 
to ours, have been obtained by a boundary layer technique by R. 
Buchal and J. B. Keller [2] and R. Buchal [ l ] . The present work 
was partly motivated by B. Friedman [3] and F. W. J. Olver [4]. 
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