HIGHER PRODUCTS

BY DAVID KRAINES¹

Communicated by W. S. Massey, September 8, 1965

W. S. Massey has defined a class of higher order cohomology operations of several variables, the higher products [2]. In this paper, we shall present a relativized definition of the higher products. We shall go on to list some of the algebraic and functorial properties of these operations. Finally, we shall describe a related cohomology operation of one variable. In certain cases, the latter operation can be computed in terms of primary Steenrod operations.

1. Notation and definitions. Throughout this paper, let \overline{X} be a topological space and let (X_i, A_i) be pairs of subspaces of \overline{X} , for $i=1, \dots, k$, such that $\bigcup_{r=1}^{k} A_r \subset \bigcap_{r=1}^{k} X_r$. Furthermore, for $1 \leq i$, $j \leq k$, assume that the triads (\overline{X}, A_i, A_j) are excisive in the singular cohomology theory. This condition is satisfied if each X_i and A_i are open in \overline{X} or if \overline{X} is a CW complex and each X_i and A_i are subcomplexes. Let u_1, \dots, u_k be cohomology classes in the singular cohomology groups $H^{p_1}(X_1, A_1), \dots, H^{p_k}(X_k, A_k)$ respectively, where the coefficients are in a fixed commutative ring R with identity. Finally, let $p(i, j) = \sum_{r=i}^{j} p_r - 1$ and $(X, A) = (\bigcap_{r=1}^{k} X_r, \bigcup_{r=1}^{k} A_r)$.

Under certain conditions, we may define the k-fold product $\langle u_1, \cdots, u_k \rangle$. Our definition shall be similar to the provisional definition of Massey [2].

DEFINITION 1. A defining system for $\langle u_1, \dots, u_k \rangle$, A, is a set of singular cochains $(a_{i,j})$, for $1 \leq i \leq j \leq k$ and $(i, j) \neq (1, k)$, satisfying the conditions:

(1.1) $a_{i,j} \in C^{p(i,j)+1}(\bigcap_{r=i}^{j} X_r, \bigcup_{r=i}^{r} A_r),$

(1.2) $a_{i,i}$ is a cocycle representative of u_i , $i=1, \cdots, k$ and

(1.3) $\delta a_{i,j} = \sum_{r=i}^{j-1} (-1)^{(j+1-r)p(i,r)} a_{i,r} a_{r+1,j}$

The related cocycle of A is the singular cocycle of $C^*(X, A)$

(1.4) $\sum_{r=1}^{k-1} (-1)^{(k+1-r)p(1,r)} a_{1,r} a_{r+1,k}.$

DEFINITION 2. The k-fold product $\langle u_1, \dots, u_k \rangle$ is said to be defined if there is a defining system for it. If it is defined, then $\langle u_1, \dots, u_k \rangle$ consists of all classes $w \in H^{p(1,k)+2}(X, A)$ for which there exists a defining system A whose related cocycle represents w.

If k=2, then the higher product $\langle u_1, u_2 \rangle$ is the ordinary cup product

¹ This research was supported by the National Science Foundation grant GP 2497. The author wishes to express his gratitude to Professor E. Spanier for his guidance.

 u_1u_2 . If k=3, then $\langle u_1, u_2, u_3 \rangle$ is defined if and only if the cup products $u_1u_2=0$ and $u_2u_3=0$. In this case the related cocycles are of the form $a_{12}a_{33}-(-1)^{p_1}a_{11}a_{23}$. This is a secondary operation, the Massey triple product as defined in [4].

The k-fold product is a (k-1)-order cohomology operation of k variables. In order for $\langle u_1, \dots, u_k \rangle$ to be defined, it is necessary that the (k-2)-order operations $\langle u_1, \dots, u_{k-1} \rangle$ and $\langle u_2, \dots, u_k \rangle$ be defined and contain the zero element. In general this condition is not sufficient. There must exist defining systems A' and A'' for $\langle u_1, \dots, u_{k-1} \rangle$ and $\langle u_2, \dots, u_k \rangle$ respectively, for which not only do the related cocycles of each cobound but also $a'_{i,j} = a''_{i,j}$ for 1 < i $\leq j < k$. In this case, we say that $\langle u_1, \dots, u_{k-1} \rangle$ and $\langle u_2, \dots, u_k \rangle$ vanish simultaneously.

2. **Properties.** We take the position that the higher products are analogous to the cohomology cup product. The properties listed below are generalizations of well-known relations satisfied by the cup product.

2.1. Naturality. For $i = 1, \dots, k$, let (Y_i, B_i) be pairs of subspaces of the topological space \overline{Y} satisfying the conditions of §1. Let $g: \overline{Y} \to \overline{X}$ be a continuous map such that the image of (Y_i, B_i) under g is contained in (X_i, A_i) and denote by $g_i: (Y_i, B_i) \to (X_i, A_i)$ the induced map. Also, with $(Y, B) = (\bigcap_{r=1}^k Y_r, \bigcup_{r=1}^k B_r)$, let $\overline{g}: (Y, B)$ $\to (X, A)$ be the induced map. If $\langle u_1, \dots, u_k \rangle$ is defined, then so is $\langle g_1^* u_1, \dots, g_k^* u_k \rangle$ and $\overline{g}^* \langle u_1, \dots, u_k \rangle \subset \langle g_1^* u_1, \dots, g_k^* u_k \rangle$.

2.2. Scalar multiplication. Assume that the product $\langle u_1, \dots, u_k \rangle$ is defined. Then $\langle u_1, \dots, xu_t, \dots, u_k \rangle$ is defined for any $x \in \mathbb{R}$, $t = 1, \dots, k$ and $x \langle u_1, \dots, u_k \rangle \subset \langle u_1, \dots, xu_t, \dots, u_k \rangle$.

2.3. Coboundary formula. For some $t=1, \dots, k$, assume that $(X_t, A_t) = (B, C)$ and $(X_i, A_i) = (Y, C)$ for $i \neq t$, where (Y, B, C) is a triple of topological spaces. If $\langle u_1, \dots, u_t, \dots, u_k \rangle$ is defined as a subset of $H^{p(1,k)+2}(B, C)$, then $\langle u_1, \dots, \delta u_t, \dots, u_k \rangle$ is defined as a subset of $H^{p(1,k)+3}(Y, B)$ and

$$\delta\langle u_1, \cdots, u_t, \cdots, u_k \rangle \subset (-1)^m \langle u_1, \cdots, \delta u_t, \cdots, u_k \rangle$$

with $m = \sum_{r=1}^{i-1} p_r + k$.

2.4. Loop suspension. Let $\pi: PX \to X$ be the path loop fibration over X. Then $E_A = \pi^{-1}(A)$ is the space of paths in X starting from the base point and ending in A. The relative loop suspension homomorphism $\sigma: H^n(X, A) \to H^{n-1}(E_A)$ is defined as the composite map

$$H^n(X, A) \xrightarrow{\pi^*} H^n(PX, E_A) \stackrel{\delta}{\leftarrow} H^{n-1}(E_A).$$

Assume that $\langle u_1, \cdots, u_k \rangle$ is defined as a subset of $H^{p(1,k)+2}(X, A)$. Then $\sigma \langle u_1, \cdots, u_k \rangle$ is the subset of $H^{p(1,k)+1}(E_A)$ consisting solely of the zero element.

2.5. Associativity. Let $\langle u_1, \cdots, u_k \rangle$ be defined as a subset of $H^{p(1,k)+2}(X, A)$ and let $v \in H^q(X', A')$, where (X', A') is also a pair of subspaces of \overline{X} . Then the k-fold product $\langle u_1, \cdots, u_t v, \cdots, u_k \rangle$ is defined for each $t = 1, \cdots, k$ as a subset of $H^{p(1,k)+q+2}(X \cap X', A \cup A')$ and satisfies the relations

$$\langle u_1, \cdots, u_k \rangle v \subset \langle u_1, \cdots, u_k v \rangle,$$

 $v \langle u_1, \cdots, u_k \rangle \subset (-1)^{k_q} \langle v u_1, \cdots, u_k \rangle$

and

 $\langle u_1, \cdots, u_t v, u_{t+1}, \cdots, u_k \rangle \cap \langle u_1, \cdots, u_t, v u_{t+1}, \cdots, u_k \rangle \neq \emptyset.$

These relations may be interpreted as equalities modulo the sum of the indeterminacies.

2.6. Symmetry. Assume that the higher product $\langle u_1, \dots, u_k \rangle$ is defined. Then the symmetric product $\langle u_k, \dots, u_1 \rangle$ is also defined and $\langle u_1, \dots, u_k \rangle = (-1)^n \langle u_k, \dots, u_1 \rangle$ with $n = \sum_{1 \le r < s \le k} p_r p_s + (k-1)(k-2)/2$.

2.7. Permutability. Assume that all the k-fold products $\langle u_i, \dots, u_k, u_1, \dots, u_{t-1} \rangle$ are defined simultaneously as subsets of $H^{p(1,k)+2}(X, A)$. Then there are classes $w_t \in \langle u_t, \dots, u_{t-1} \rangle$, for $t=1, \dots, k$, such that $\sum_{i=1}^k (-1)^{t(k+1)+\pi(i)} w_i = 0$, where $\pi(1) = 0$ and $\pi(t) = (p_1 + \cdots + p_{t-1})(p_t + \cdots + p_k)$ for t > 1.

The proofs of these formulas and relations are computational in nature. For the proof of 2.5, we use the u_1 -product of Steenrod [3] and a formula of G. Hirsch [1]. The formulas 2.6 and 2.7 require the use of a set of "commuting" chain homotopies which we may construct by means of the acyclic model theorem.

3. The operation $\langle u \rangle^k$. If we assume that $u_1 = u_2 = \cdots = u_k = u \in H^m(X, A)$, then we can define a related higher order cohomology operation $\langle u \rangle^k$ with less indeterminacy.

DEFINITION 1'. A defining system for $\langle u \rangle^k$, A^* , is a set of singular cochains (a_n) , for $n = 1, \dots, k-1$, satisfying the conditions:

 $(3.1) \ a_n \in C^{n(m-1)+1}(X, A),$

(3.2) a_1 is a cocycle representative of u, and

(3.3) $\delta a_n = \sum_{r=1}^{n-1} (-1)^{rn(m-1)} a_r a_{n-r}$.

The related cocycle of A^* is the singular cocycle of $C^*(X, A)$

 $(3.4) \quad \sum_{r=1}^{k-1} (-1)^{rk(m-1)} a_r a_{k-r}.$

130

DEFINITION 2'. The operation $\langle u \rangle^k$ is said to be defined if there is a defining system for it. If it is defined, then $\langle u \rangle^k$ consists of all classes $w \in H^{k(m-1)+2}(X, A)$ for which there exists a defining system A^* whose related cocycle represents w.

If $\langle u \rangle^k$ is defined, then so is the k-fold product $\langle u, \dots, u \rangle$ and $\langle u \rangle^k \subset \langle u, \dots, u \rangle$. Also $\langle u \rangle^k$ is defined if and only if $\langle u \rangle^{k-1}$ is defined and contains the zero class.

Let p be an odd prime and let β be the Bockstein operator associated with the exact sequence of coefficient groups $0 \rightarrow Z_p \rightarrow Z_p \rightarrow Z_p \rightarrow Z_p \rightarrow 0$. Furthermore, let P^m be the Steenrod pth power operation,

$$P^m \colon H^q(X; Z_p) \to H^{q+2m(p-1)}(X; Z_p).$$

THEOREM A. If $u \in H^{2m+1}(X; Z_p)$, then $\langle u \rangle^p$ is defined as a single class in $H^{2mp+2}(X; Z_p)$ and $\langle u \rangle^p = -\beta P^m u$.

If u is a one-dimensional class (mod p) for any prime p, then we may completely characterize the operation $\langle u \rangle^{k}$ by the following theorem.

THEOREM B. Let $\iota \in H^1(\mathbb{Z}_{p^n}; \mathbb{Z}_p)$ be the mod p reduction of the fundamental class ι_n of $H^1(\mathbb{Z}_{p^n}; \mathbb{Z}_{p^n})$. Then $\langle \iota \rangle^{p^n}$ is defined as the single class $-\beta_n \iota_n \in H^2(\mathbb{Z}_{p^n}; \mathbb{Z}_p)$, where β_n is the Bockstein coboundary operator associated with the exact sequence of coefficient groups

$$0 \to Z_p \to Z_{p^{n+1}} \to Z_{p^n} \to 0.$$

BIBLIOGRAPHY

1. G. Hirsch, Quelques propriétés des produits de Steenrod, C. R. Acad. Sci. Paris 241 (1955), 923-925.

2. W. S. Massey, Some higher order cohomology operations. Symposium internacional de topología algebraica [International symposium on algebraic topology], pp. 145-154, Universidad Nacional Autónama de México and UNESCO, Mexico City, 1958.

3. N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. 48 (1947), 290-316.

4. H. Uehara and W. S. Massey, *The Jacobi identity for Whitehead products*, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, pp. 361-377, Princeton Univ. Press, Princeton, N. J., 1957.

UNIVERSITY OF CALIFORNIA, BERKELEY

1966]