HIGHER PRODUCTS

BY DAVID KRAINES ${ }^{1}$

Communicated by W. S. Massey, September 8, 1965

W. S. Massey has defined a class of higher order cohomology operations of several variables, the higher products [2]. In this paper, we shall present a relativized definition of the higher products. We shall go on to list some of the algebraic and functorial properties of these operations. Finally, we shall describe a related cohomology operation of one variable. In certain cases, the latter operation can be computed in terms of primary Steenrod operations.

1. Notation and definitions. Throughout this paper, let \bar{X} be a topological space and let (X_{i}, A_{i}) be pairs of subspaces of \bar{X}, for $i=1, \cdots, k$, such that $\cup_{r=1}^{k} A_{r} \subset \bigcap_{r=1}^{k} X_{r}$. Furthermore, for $1 \leqq i$, $j \leqq k$, assume that the triads (\bar{X}, A_{i}, A_{j}) are excisive in the singular cohomology theory. This condition is satisfied if each X_{i} and A_{i} are open in \bar{X} or if \bar{X} is a CW complex and each X_{i} and A_{i} are subcomplexes. Let u_{1}, \cdots, u_{k} be cohomology classes in the singular cohomology groups $H^{p_{1}}\left(X_{1}, A_{1}\right), \cdots, H^{p_{k}}\left(X_{k}, A_{k}\right)$ respectively, where the coefficients are in a fixed commutative ring R with identity. Finally, let $p(i, j)=\sum_{r=t}^{j} p_{r}-1$ and $(X, A)=\left(\bigcap_{r=1}^{k} X_{r}, \cup_{r=1}^{k} A_{r}\right)$.

Under certain conditions, we may define the k-fold product $\left\langle u_{1}, \cdots, u_{k}\right\rangle$. Our definition shall be similar to the provisional definition of Massey [2].

Definition 1. A defining system for $\left\langle u_{1}, \cdots, u_{k}\right\rangle, A$, is a set of singular cochains ($a_{i, j}$), for $1 \leqq i \leqq j \leqq k$ and $(i, j) \neq(1, k)$, satisfying the conditions:
(1.1) $a_{i, j} \in C^{p(i, j)+1}\left(\bigcap_{r-i}^{j} X_{r}, \cup_{r=i}^{r} A_{r}\right)$,
(1.2) $a_{i, i}$ is a cocycle representative of $u_{i}, i=1, \cdots, k$ and
(1.3) $\delta a_{i, j}=\sum_{r=1}^{j-1}(-1)^{(j+1-r) p(i, r)} a_{i, r} a_{r+1, j}$.

The related cocycle of A is the singular cocycle of $C^{*}(X, A)$
(1.4) $\sum_{r=1}^{k-1}(-1)^{(k+1-r) p(1, r)} a_{1, r} a_{r+1, k}$.

Definition 2. The k-fold product $\left\langle u_{1}, \cdots, u_{k}\right\rangle$ is said to be defined if there is a defining system for it. If it is defined, then $\left\langle u_{1}, \cdots, u_{k}\right\rangle$ consists of all classes $w \in H^{p(1, k)+2}(X, A)$ for which there exists a defining system A whose related cocycle represents w.

If $k=2$, then the higher product $\left\langle u_{1}, u_{2}\right\rangle$ is the ordinary cup product

[^0]$u_{1} u_{2}$. If $k=3$, then $\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ is defined if and only if the cup products $u_{1} u_{2}=0$ and $u_{2} u_{3}=0$. In this case the related cocycles are of the form $a_{12} a_{33}-(-1)^{p_{1}} a_{11} a_{23}$. This is a secondary operation, the Massey triple product as defined in [4].

The k-fold product is a ($k-1$)-order cohomology operation of k variables. In order for $\left\langle u_{1}, \cdots, u_{k}\right\rangle$ to be defined, it is necessary that the $(k-2)$-order operations $\left\langle u_{1}, \cdots, u_{k-1}\right\rangle$ and $\left\langle u_{2}, \cdots, u_{k}\right\rangle$ be defined and contain the zero element. In general this condition is not sufficient. There must exist defining systems A^{\prime} and $A^{\prime \prime}$ for $\left\langle u_{1}, \cdots, u_{k-1}\right\rangle$ and $\left\langle u_{2}, \cdots, u_{k}\right\rangle$ respectively, for which not only do the related cocycles of each cobound but also $a_{i, j}^{\prime}=a_{i, j}^{\prime \prime}$ for $1<i$ $\leqq j<k$. In this case, we say that $\left\langle u_{1}, \cdots, u_{k-1}\right\rangle$ and $\left\langle u_{2}, \cdots, u_{k}\right\rangle$ vanish simultaneously.
2. Properties. We take the position that the higher products are analogous to the cohomology cup product. The properties listed below are generalizations of well-known relations satisfied by the cup product.
2.1. Naturality. For $i=1, \cdots, k$, let $\left(Y_{i}, B_{i}\right)$ be pairs of subspaces of the topological space \bar{Y} satisfying the conditions of $\S 1$. Let $g: \bar{Y} \rightarrow \bar{X}$ be a continuous map such that the image of (Y_{i}, B_{i}) under g is contained in $\left(X_{i}, A_{i}\right)$ and denote by $g_{i}:\left(Y_{i}, B_{i}\right) \rightarrow\left(X_{i}, A_{i}\right)$ the induced map. Also, with $(Y, B)=\left(\bigcap_{r=1}^{k} Y_{r}, U_{r=1}^{k} B_{r}\right)$, let $\bar{g}:(Y, B)$ $\rightarrow(X, A)$ be the induced map. If $\left\langle u_{1}, \cdots, u_{k}\right\rangle$ is defined, then so is $\left\langle g_{1}^{*} u_{1}, \cdots, g_{k}^{*} u_{k}\right\rangle$ and $\bar{g}^{*}\left\langle u_{1}, \cdots, u_{k}\right\rangle \subset\left\langle g_{1}^{*} u_{1}, \cdots, g_{k}^{*} u_{k}\right\rangle$.
2.2. Scalar multiplication. Assume that the product $\left\langle u_{1}, \cdots, u_{k}\right\rangle$ is defined. Then $\left\langle u_{1}, \cdots, x u_{t}, \cdots, u_{k}\right\rangle$ is defined for any $x \in R$, $t=1, \cdots, k$ and $x\left\langle u_{1}, \cdots, u_{k}\right\rangle \subset\left\langle u_{1}, \cdots, x u_{t}, \cdots, u_{k}\right\rangle$.
2.3. Coboundary formula. For some $t=1, \cdots, k$, assume that $\left(X_{t}, A_{i}\right)=(B, C)$ and $\left(X_{i}, A_{i}\right)=(Y, C)$ for $i \neq t$, where (Y, B, C) is a triple of topological spaces. If $\left\langle u_{1}, \cdots, u_{t}, \cdots, u_{k}\right\rangle$ is defined as a subset of $H^{p(1, k)+2}(B, C)$, then $\left\langle u_{1}, \cdots, \delta u_{t}, \cdots, u_{k}\right\rangle$ is defined as a subset of $H^{p(1, k)+3}(Y, B)$ and

$$
\delta\left\langle u_{1}, \cdots, u_{t}, \cdots, u_{k}\right\rangle \subset(-1)^{m}\left\langle u_{1}, \cdots, \delta u_{t}, \cdots, u_{k}\right\rangle
$$

with $m=\sum_{r=1}^{t-1} p_{r}+k$.
2.4. Loop suspension. Let $\pi: P X \rightarrow X$ be the path loop fibration over X. Then $E_{A}=\pi^{-1}(A)$ is the space of paths in X starting from the base point and ending in A. The relative loop suspension homomorphism $\sigma: H^{n}(X, A) \rightarrow H^{n-1}\left(E_{A}\right)$ is defined as the composite map

$$
H^{n}(X, A) \stackrel{\pi^{*}}{\rightarrow} H^{n}\left(P X, E_{A}\right) \stackrel{\delta}{\approx} H^{n-1}\left(E_{A}\right)
$$

Assume that $\left\langle u_{1}, \cdots, u_{k}\right\rangle$ is defined as a subset of $H^{p(1, k)+2}(X, A)$. Then $\sigma\left\langle u_{1}, \cdots, u_{k}\right\rangle$ is the subset of $H^{p(1, k)+1}\left(E_{A}\right)$ consisting solely of the zero element.
2.5. Associativity. Let $\left\langle u_{1}, \cdots, u_{k}\right\rangle$ be defined as a subset of $H^{p(1, k)+2}(X, A)$ and let $v \in H^{q}\left(X^{\prime}, A^{\prime}\right)$, where ($\left.X^{\prime}, A^{\prime}\right)$ is also a pair of subspaces of \bar{X}. Then the k-fold product $\left\langle u_{1}, \cdots, u_{t} v, \cdots, u_{k}\right\rangle$ is defined for each $t=1, \cdots, k$ as a subset of $H^{p(1, k)+q+2}\left(X \cap X^{\prime}, A \cup A^{\prime}\right)$ and satisfies the relations

$$
\begin{aligned}
& \left\langle u_{1}, \cdots, u_{k}\right\rangle v \subset\left\langle u_{1}, \cdots, u_{k} v\right\rangle \\
& v\left\langle u_{1}, \cdots, u_{k}\right\rangle \subset(-1)^{k q}\left\langle v u_{1}, \cdots, u_{k}\right\rangle
\end{aligned}
$$

and

$$
\left\langle u_{1}, \cdots, u_{t} v, u_{t+1}, \cdots, u_{k}\right\rangle \cap\left\langle u_{1}, \cdots, u_{t}, v u_{t+1}, \cdots, u_{k}\right\rangle \neq \varnothing
$$

These relations may be interpreted as equalities modulo the sum of the indeterminacies.
2.6. Symmetry. Assume that the higher product $\left\langle u_{1}, \cdots, u_{k}\right\rangle$ is defined. Then the symmetric product $\left\langle u_{k}, \cdots, u_{1}\right\rangle$ is also defined and $\left\langle u_{1}, \cdots, u_{k}\right\rangle=(-1)^{n}\left\langle u_{k}, \cdots, u_{1}\right\rangle \quad$ with $n=\sum_{1 \leq r<s \leq k} p_{r} p_{s}$ $+(k-1)(k-2) / 2$.
2.7. Permutability. Assume that all the k-fold products $\left\langle u_{t}, \cdots, u_{k}\right.$, $\left.u_{1}, \cdots, u_{t-1}\right\rangle$ are defined simultaneously as subsets of $H^{p(1, k)+2}(X, A)$. Then there are classes $w_{t} \in\left\langle u_{t}, \cdots, u_{t-1}\right\rangle$, for $t=1, \cdots, k$, such that $\sum_{t=1}^{k}(-1)^{t(k+1)+\pi(t)} w_{t}=0$, where $\pi(1)=0$ and $\pi(t)=\left(p_{1}+\cdots\right.$ $\left.+p_{t-1}\right)\left(p_{t}+\cdots+p_{k}\right)$ for $t>1$.

The proofs of these formulas and relations are computational in nature. For the proof of 2.5, we use the u_{1}-product of Steenrod [3] and a formula of G. Hirsch [1]. The formulas 2.6 and 2.7 require the use of a set of "commuting" chain homotopies which we may construct by means of the acyclic model theorem.
3. The operation $\langle u\rangle^{k}$. If we assume that $u_{1}=u_{2}=\cdots=u_{k}$ $=u \in H^{m}(X, A)$, then we can define a related higher order cohomology operation $\langle u\rangle^{k}$ with less indeterminacy.

Definition 1^{\prime}. A defining system for $\langle u\rangle^{k}, A^{*}$, is a set of singular cochains (a_{n}), for $n=1, \cdots, k-1$, satisfying the conditions:
(3.1) $a_{n} \in C^{n(m-1)+1}(X, A)$,
(3.2) a_{1} is a cocycle representative of u, and
(3.3) $\delta a_{n}=\sum_{r=1}^{n-1}(-1)^{r n(m-1)} a_{r} a_{n-r}$.

The related cocycle of A^{*} is the singular cocycle of $C^{*}(X, A)$

$$
\begin{equation*}
\sum_{r=1}^{k-1}(-1)^{r k(m-1)} a_{r} a_{k-r} . \tag{3.4}
\end{equation*}
$$

Definition 2^{\prime}. The operation $\langle u\rangle^{k}$ is said to be defined if there is a defining system for it. If it is defined, then $\langle u\rangle^{k}$ consists of all classes $w \in H^{k(m-1)+2}(X, A)$ for which there exists a defining system A^{*} whose related cocycle represents w.

If $\langle u\rangle^{k}$ is defined, then so is the k-fold product $\langle u, \cdots, u\rangle$ and $\langle u\rangle^{k} \subset\langle u, \cdots, u\rangle$. Also $\langle u\rangle^{k}$ is defined if and only if $\langle u\rangle^{k-1}$ is defined and contains the zero class.

Let p be an odd prime and let β be the Bockstein operator associated with the exact sequence of coefficient groups $0 \rightarrow Z_{p} \rightarrow Z_{p^{2}} \rightarrow Z_{p}$ $\rightarrow 0$. Furthermore, let P^{m} be the Steenrod p th power operation,

$$
P^{m}: H^{q}\left(X ; Z_{p}\right) \rightarrow H^{q+2 m(p-1)}\left(X ; Z_{p}\right)
$$

Theorem A. If $u \in H^{2 m+1}\left(X ; Z_{p}\right)$, then $\langle u\rangle^{p}$ is defined as a single class in $H^{2 m p+2}\left(X ; Z_{p}\right)$ and $\langle u\rangle^{p}=-\beta P^{m} u$.

If u is a one-dimensional class $(\bmod p)$ for any prime p, then we may completely characterize the operation $\langle u\rangle^{k}$ by the following theorem.

Theorem B. Let $\iota \in H^{1}\left(Z_{p^{n}} ; Z_{p}\right)$ be the mod p reduction of the fundamental class ι_{n} of $H^{1}\left(Z_{p^{n}} ; Z_{p^{n}}\right)$. Then $\langle\iota\rangle^{p^{n}}$ is defined as the single class $-\beta_{n} \iota_{n} \in H^{2}\left(Z_{p^{n}} ; Z_{p}\right)$, where β_{n} is the Bockstein coboundary operator associated with the exact sequence of coefficient groups

$$
0 \rightarrow Z_{p} \rightarrow Z_{p^{n+1}} \rightarrow Z_{p^{n}} \rightarrow 0
$$

Bibliography

1. G. Hirsch, Quelques propriétés des produits de Steenrod, C. R. Acad. Sci. Paris 241 (1955), 923-925.
2. W. S. Massey, Some higher order cohomology operations. Symposium internacional de topología algebraica [International symposium on algebraic topology], pp. 145-154, Universidad Nacional Autónama de México and UNESCO, Mexico City, 1958.
3. N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. 48 (1947), 290-316.
4. H. Uehara and W. S. Massey, The Jacobi identity for Whitehead products, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, pp. 361377, Princeton Univ. Press, Princeton, N. J., 1957.

[^0]: ${ }^{1}$ This research was supported by the National Science Foundation grant GP 2497. The author wishes to express his gratitude to Professor E. Spanier for his guidance.

