FIRST ORDER PROPERTIES OF PAIRS OF CARDINALS

BY H. JEROME KEISLER

Communicated by D. Scott, September 23, 1965

We consider models of a countable first order logic L with an identity symbol and predicate symbols U, P_0, P_1, \cdots, U being unary. A model $\mathfrak{A} = \langle A, U_{\mathfrak{A}}, P_{\mathfrak{A}}, \cdots \rangle$ for L is said to be a *two-cardinal model* if A is infinite and the power of $U_{\mathfrak{A}}$ is less than the power of A. By a set of axioms for two-cardinal models we mean a set Σ of sentences of L such that \mathfrak{A} is a model of Σ if and only if there exists a two-cardinal model which is elementarily equivalent to \mathfrak{A} . Using results of Fuhrken [1], Vaught [4] proved the following theorem.

THEOREM (VAUGHT). There is a set of axioms for two-cardinal models. If the language L is recursive, then there is a recursive set of axioms for two-cardinal models.

We say that L is recursive if the number of argument places of the symbol P_n is a recursive function of n. Vaught's proof depends on the fact that if Σ^* is a recursive set of sentences in an extension L^* of the language L, then there is a recursive set Σ of sentences of Lsuch that Σ and Σ^* have exactly the same consequences in L. In principle his proof can be used to construct a particular set of axioms for two-cardinal models, but the set seems to be so complicated that in practice one cannot easily tell whether or not a given sentence belongs to it. Vaught has proposed the problem of finding a simple set of axioms for two-cardinal models. The author heard about Vaught's problem through Dana Scott.

In this note we shall give a particular set of axioms for two-cardinal models which is simple enough to be written down as a fairly short axiom scheme. Our theorem was stated without proof in [2]. Let the individual variables of L be v_i , x_i , y_i , z_i , where $i=0, 1, 2, \cdots$.

THEOREM 1. A set of axioms for two-cardinal models is given by the set Γ of all sentences of the form

(*)
$$\exists v_0 \forall x_0 \exists y_0 Z_0 \cdots \forall x_n \exists y_n z_n \\ \left[\bigwedge_{i=0}^n v_0 \neq y_i \& \bigwedge_{i,j=0}^n (U(x_j) \& x_i = z_j \rightarrow y_i = x_j) \\ \& \bigwedge_{j=0}^m (\phi_j(x_0, \cdots, x_n) \rightarrow \phi_j(y_0, \cdots, y_n)) \right]$$

[January

There is one instance of the scheme (*) for each n and each finite sequence of formulas ϕ_0, \dots, ϕ_m of L with the free variables x_0, \dots, x_n .

It is obvious that the set Γ of sentences is recursive provided that the language *L* is recursive. To prove Theorem 1, we shall use a lemma of Vaught, which is proved in Morley and Vaught [3, p. 55]. We use the standard notations $\mathfrak{A}\cong\mathfrak{B}, \mathfrak{A}=\mathfrak{B}, \mathfrak{A}\prec\mathfrak{B}$, to mean that \mathfrak{A} is isomorphic to $\mathfrak{B}, \mathfrak{A}$ is elementarily equivalent to \mathfrak{B} , and \mathfrak{A} is an elementary submodel of \mathfrak{B} (see, for example, [3]).

LEMMA (VAUGHT). For each model \mathfrak{A} for L, the following two conditions are equivalent:

(i) There is a two-cardinal model \mathfrak{B} such that $\mathfrak{B} \equiv \mathfrak{A}$.

(ii) There exist countable models \mathfrak{B} , \mathfrak{C} , such that $\mathfrak{B} \equiv \mathfrak{A}$, $\mathfrak{C} \prec \mathfrak{B}$, $\mathfrak{C} \neq \mathfrak{B}$, $\mathfrak{C} \cong \mathfrak{B}$, and $U_{\mathfrak{C}} = U_{\mathfrak{B}}$.

We now prove Theorem 1. First the easy direction. We let \mathfrak{A} be elementarily equivalent to a two-cardinal model and prove that \mathfrak{A} is a model of Γ . Consider a sentence ψ of the form (*) in Γ . Let \mathfrak{B} , \mathfrak{C} be as in part (ii) of the lemma and let f be an isomorphism from \mathfrak{B} to \mathfrak{C} . For all ϕ_i and all $b_0, \dots, b_n \in B$, the following are equivalent:

> b_0, \dots, b_n satisfies ϕ_i in \mathfrak{B} ; fb_0, \dots, fb_n satisfies ϕ_i in \mathfrak{C} ; fb_0, \dots, fb_n satisfies ϕ_i in \mathfrak{B} .

We shall use the fact that the first line above implies the third line. To show that ψ holds in \mathfrak{B} , we find an element v_0 in B and functions $y_i(x_0, \dots, x_i), z_i(x_0, \dots, x_i), i=0, \dots, n$ on B such that the inner part of ψ holds in \mathfrak{B} for all x_0, \dots, x_n in B. Take for v_0 any element of B-C. Let $y_i(x_0, \dots, x_i) = f(x_i)$. If $U(x_i)$, let $z_i(x_0, \dots, x_i) = f^{-1}(x_i)$, and otherwise choose z_i arbitrarily. These choices of v_0, y_i , z_i show that ψ holds in \mathfrak{B} and thus in \mathfrak{A} . Therefore \mathfrak{A} is a model of ψ .

We now prove the converse. Assume \mathfrak{A} is a model of Γ . We extend the language L to a language L^* by adding a new individual constant c and function symbols F_n , G_n with n+1 argument places, $n=0, 1, 2, \cdots$. Let Γ^* be the set of all the sentences below:

(1) $\forall x_0 \cdots x_n, c \neq F_n(x_0, \cdots, x_n).$

(2) $\forall x_0 \cdots x_n, (U(x_j) \& x_i = G_j(x_0, \cdots, x_j) \rightarrow F_i(x_0, \cdots, x_i) = x_j).$

(3) $\forall x_0 \cdots x_n, [\phi(x_0, \cdots, x_n) \rightarrow \phi(F_0(x_0), \cdots, F_n(x_0, \cdots, x_n))].$

The scheme (1) contains one sentence for each n, (2) contains a sentence for each n and each $i, j \leq n$, while (3) contains one sentence for each n and each formula $\phi(x_0, \dots, x_n)$ of the original language L. Since \mathfrak{A} is a model of Γ , it follows that for each finite subset $\Gamma_0^* \subset \Gamma^*$

the model \mathfrak{A} can be expanded to a model $(\mathfrak{A}, c, F_0, \cdots, G_0, \cdots)$ of Γ_0^* . Let Δ be the set of all sentences of L which hold in \mathfrak{A} . Then the set of sentences $\Delta \cup \Gamma^*$ is finitely satisfiable. By the compactness and Löwenheim-Skolem theorems, $\Delta \cup \Gamma^*$ has a countable model $(\mathfrak{B}, c, F_0, \cdots, G_0, \cdots)$. Since \mathfrak{B} is a model of $\Delta, \mathfrak{B} \equiv \mathfrak{A}$. We shall show that \mathfrak{B} has the property described in part (ii) of the lemma.

Let us list the elements of B, say $B = \{b_0, b_1, \dots, b_n, \dots\}$. Define the function f on B into B by

$$f(b_n) = F_n(b_0, b_1, \cdots, b_n).$$

This definition is unambiguous even if some b occurs more than once in the sequence b_0, b_1, \cdots , because of (3). We claim that f has the following three properties:

- (4) Range of $f \neq B$.
- (5) $U_{\mathfrak{B}} \subset \text{range of } f$.

(6) For all formulas $\phi(x_0, \dots, x_n)$ of L, if b_0, \dots, b_n satisfies ϕ in \mathfrak{B} then so does fb_0, \dots, fb_n .

Condition (4) is guaranteed by the sentences (1). Condition (5) is guaranteed by (2), because if $U(b_j)$ and $b_i = G_j(b_0, \dots, b_j)$, then choosing $n \ge i$, j we have $f(b_i) = F_i(b_0, \dots, b_i) = b_j$. Finally, condition (6) is guaranteed by (3).

Now let \mathfrak{C} be the submodel of \mathfrak{B} such that C is the range of f. It follows from (4) that $\mathfrak{C} \neq \mathfrak{B}$, and from (5) that $U_{\mathfrak{B}} \subset C$. From (6) we see that f is an isomorphism from \mathfrak{B} to \mathfrak{C} , and it follows that $U_{\mathfrak{C}} = U_{\mathfrak{B}}$ and $\mathfrak{B} \cong \mathfrak{C}$. It also follows from (6) that $\mathfrak{C} \prec \mathfrak{B}$, because if fb_0, \cdots, fb_n satisfies ϕ in \mathfrak{C} then b_0, \cdots, b_n satisfies ϕ in \mathfrak{B} and hence fb_0, \cdots, fb_n satisfies ϕ in \mathfrak{B} . By the lemma, there is a two-cadinal model which is equivalent to \mathfrak{A} . Our proof is complete.

There are several ways in which we can modify the scheme (*) without affecting the proof of Theorem 1. This gives us some other slightly different sets of axioms for two-cardinal models. One possibility is to replace the scheme (*) by

$$\exists v_0 \forall x_0 \exists y_0 z_0 \cdots \forall x_n \exists y_n z_n$$

$$(**) \qquad \left[\bigwedge_{i=0}^n v_0 \neq y_i \& \bigwedge_{i,j=0}^n (U(x_j) \to (x_i = z_j \leftrightarrow y_i = x_j)) \\ \& \bigwedge_{j=0}^n (\phi_j(x_0, \cdots, x_n) \leftrightarrow \phi_j(y_0, \cdots, y_n)) \right].$$

Another scheme of axioms for two-cardinal models which will work with the same proof is:

$$\exists v_0 \forall x_0 w_0 \exists y_0 z_0 \cdots \forall x_n w_n \exists y_n z_n$$

$$\left[\bigwedge_{i=0}^n v_0 \neq y_i \& \left[\left(\Box \exists v_1 U(v_1) \bigvee \bigwedge_{i=1}^n U(w_i) \right) \right. \\ \left. \rightarrow \bigwedge_{j=0}^m \left(\phi_j(x_0, \cdots, x_n, z_0, \cdots, z_n) \right. \\ \left. \leftrightarrow \phi_j(y_0, \cdots, y_n, w_0, \cdots, w_n) \right) \right] \right].$$

Everything works out just as well if we define the notion of a twocardinal model in the following slightly different way. Let the language L have two unary predicates U, V, in addition to P_0, P_1, \cdots . By a two-cardinal model we now mean a model \mathfrak{A} for L such that $V_{\mathfrak{A}}$ is infinite and the power of $U_{\mathfrak{A}}$ is less than the power of $V_{\mathfrak{A}}$. Then we get a set of axioms for two-cardinal models simply by adding the extra term $V(v_0)$ to the conjunction inside the quantifiers in the scheme (*).

References

1. G. Fuhrken, Skolem-type normal forms for first-order languages with a generalized quantifier, Fund. Math. 54 (1964), 291-302.

2. H. J. Keisler, First order properties of pairs of cardinals, Abstract 65 T-291, Notices Amer. Math. Soc. 12 (1965), 482.

3. M. Morley and R. Vaught, Homogeneous universal models, Math. Scand. 11 (1962), 37-57.

4. R. Vaught, The completeness of logic with the added quantifier "there are uncountably many," Fund. Math. 54 (1964), 303-304.

UNIVERSITY OF WISCONSIN