A CHARACTERIZATION OF Q-DOMAINS

BY ROBERT L. PENDLETON¹

Communicated by G. Whaples, December 24, 1965

Let R be an integral domain with quotient field K. By an overring of R is meant a ring B with $R \subseteq B \subseteq K$. R is a Q-domain if every overring of R is a ring of quotients of R with respect to some multiplicative system in R. A P-domain is a Prüfer ring. Q-domains have been investigated by Gilmer and Ohm [3] and by Davis [2]. All Q-domains are P-domains, and a long list of characterizations of P-domains is available in Bourbaki [1, pp. 93-94]. Noetherian Q-domains are characterized in [3] as those Dedekind domains whose ideal class group is a torsion group. The purpose of this paper is to obtain a characterization of general Q-domains (Theorem 5).

Let K^* denote the set of nonzero elements of K. If $x \in K^*$, we define the numerator ideal of x to be $N(x) = \{a \in R: a = bx, \text{ for some } b \in R\}$ and the denominator ideal of x to be $D(x) = \{b \in R: bx \in R\}$. Since $N(x) = Rx \cap R$ and D(x) = N(1/x), N(x) and D(x) are ideals in R.

If P is a prime ideal in R, R_P denotes the local ring of R at P.

THEOREM 1. R is a P-domain if and only if N(x) + D(x) = R, for all $x \in K^*$.

PROOF. First note that for any prime ideal $P \subseteq R$, $x \in R_P$ if and only if $D(x) \subseteq P$, and hence $1/x \in R_P$ if and only if $N(x) \subseteq P$. Therefore R_P is a valuation ring if and only if $N(x) \subseteq P$ or $D(x) \subseteq P$, for all $x \in K^*$, i.e., if and only if $N(x) + D(x) \subseteq P$, for all $x \in K^*$. Thus to say the ideals N(x) + D(x) are all improper is equivalent to saying all the local rings R_P are valuation rings, i.e., R is a P-domain.

COROLLARY 2. If R is a P-domain and $x \in K^*$, then the numerator and denominator ideals of x can be generated by two elements.

PROOF. Since N(x) + D(x) = R we can write x = a/b = a'/b', where a+b'=1. Then D(x) = (b, b'), for $c \in D(x)$ implies c = ca + cb' = cxb + cb', with $cx \in R$. Also N(x) = D(1/x) = (a, a').

In order to prove Theorem 5, we need to make two remarks concerning P-domains.

REMARK 3. If R is a P-domain, then the finitely generated fractionary ideals of R form a group [1]. Moreover, if $A = (a_1, \dots, a_n)$

¹ This research was partially supported by Air Force Office of Scientific Research Grant AF-AFOSR 335-63.

is a finitely generated ideal, then the inverse of A is given by $A^{-1}=R:A=\{x\in K \mid xA\subseteq R\}$. Equivalently, $A^{-1}=(b_1, \cdots, b_n)$, where $a_ib_j\in R$ and $\sum a_ib_i=1$ [4, pp. 271-272].

REMARK 4. If R is a P-domain, and B is any overring of R, then B is the intersection of all the local rings R_P of R which contain B (Proposition 2 of [2]).

THEOREM 5. Let R be a P-domain. Then R is a Q-domain if and only if for every finitely generated ideal $A \subseteq R$, there is an element $f \in R$ such that $\sqrt{A} = \sqrt{(f)}$.

PROOF. First let R be a Q-domain. We follow the argument of Theorem 2.5(g) of [3]. Let $A = (a_1, \dots, a_n)$ be a finitely generated ideal in R. Let B be the A-transform of R, i.e., $B = \{x \in K \mid xA^n \subseteq R$ for some $n \ge 0\}$. By Remark 3, we may write $A^{-1} = (b_1, \dots, b_n)$ with $\sum a_i b_i = 1$, and then $B = \bigcup (A^n)^{-1} = \bigcup (A^{-1})^n = R[b_1, \dots, b_n]$. Now B is a ring of quotients of R with respect to some multiplicative system S. Thus there is $f \in S$ such that $b_i = c_i/f$, $1 \le i \le n$, with $c_i \in R$. Then $f = f(\sum a_i b_i) = \sum c_i a_i \in A$. Moreover, $f \in S$ implies $1/f \in B$, so $(1/f)(A^n) \subseteq R$, for some n, i.e., $A^n \subseteq (f)$. Since $A^n \subseteq (f) \subseteq A$, it follows that $\sqrt{A} = \sqrt{(f)}$.

Conversely suppose R satisfies the condition stated in the theorem. To prove R is a Q-domain it suffices to prove R[x] is a ring of quotients of R, for every $x \in K^*$, by Proposition 1.4 of [3]. Let $x \in K^*$. Then, by Corollary 2, D(x) is finitely generated, so $\sqrt{D(x)} = \sqrt{(f)}$, for some $f \in R$. Hence if P is any prime ideal in R we have $(f) \subseteq P$ if and only if $D(x) \subseteq P$, and thus $R[1/f] \subseteq R_P \Leftrightarrow 1/f \in R_P \Leftrightarrow f \notin P \Leftrightarrow D(x)$ $\subseteq P \Leftrightarrow x \in R_P \Leftrightarrow R[x] \subseteq R_P$. It follows by Remark 4 that R[x] = R[1/f]which is a ring of quotients of R. This completes the proof of Theorem 5.

It should be noted that Theorem 5 does not answer the question raised on [3], namely: is the ideal class group of every Q-domain a torsion group?

References

1. N. Bourbaki, Algebre commutative, Hermann, Paris, 1965, Chapitre 7.

2. E. D. Davis, Overrings of commutative rings. II, Trans. Amer. Math. Soc. 110 (1964), 196-212.

3. R. Gilmer and J. Ohm, Integral domains with quotient overrings, Math. Ann. 153 (1964), 97-103.

4. O. Zariski and P. Samuel, *Commutative algebra*, Vol. I, Van Nostrand, Princeton, N. J., 1958.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY