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1. Introduction. Recently, establishing a conjecture of Calkin 
[l] , the author [7] showed the following result: Let § be a separable 
Hilbert space, B($) the C*-algebra of all bounded operators on § , 
C(&) the C*-algebra of all compact operators on $ , then the quo­
tient algebra B({Q)/C({Q) has a type Ill-factor ^representation. The 
discussions which are used in the proof of this result are applicable 
to more general situations. In the present paper, by using those dis­
cussions and the result of Glimm [3], we shall give a characterization 
of type I C*-algebras without the assumption of separability as 
follows: 

MAIN THEOREM. Let A be a C*-algebra. Then the following condi­
tions are equivalent. 

(1) A is a GCR algebra, 
(2) A is of type I, 
(3) A has no type Ill-factor ^-representation. 

2. Theorems. First of all we shall state a generalization of the re­
sult which are crucial in the proof of Calkin's conjecture. 

THEOREM 1. Let A be a C*-algebra with unit I, B a C*-sub algebra 
containing I of A and M a type Ill-factor on a separable Hibert space. 
Suppose that there is a linear mapping P of A into M satisfying the 
following conditions: 

(1) P(x*)=P(x)*forxEA, 
(2) P(h)^OforhfèO)GA, 
(3) p[axb) =P(a)P(x)P(b) for a, b&B and xEA, 
(4) P(B) is (T-weakly dense in M, Then, A has a type Ill-factor 

^-representation. 

The proof of this theorem is similar to the one in [7]. Here we shall 
sketch the proof. Let £2 be the set of all linear mappings Q of A into 
M satisfying the conditions (1), (2), (3) and Q(a) =P(a) for a £ 5 . 

Let £(A, M) be the Banach space of all bounded linear mappings 
of A into M. Then it is the dual of a Banach space A®yM*> where 
If* is the associated space (namely, the dual of if* = M) and y is the 
greatest cross norm. 

LEMMA 1. Q is a tr(£(A, M), A®7Af*)-compact convex subset of 
£(A, M) and each <2£Î2 satisfies Q(x*x)*zQ(x)*Q(x) for xGA. 

1 This paper was written with partial support from ONR contract NR-551(57). 
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The first part of Lemma 1 is clear. For the last part, by the assump­
tions (1), (3), and (4), and the density theorem of Kaplansky, there 
is a direct set (aa) in B such that ||aa|| ^||<2(x)|| and Q(aa)—>Q(x) 
(strongly) in M. Then, f or </> (^O)GM*, 

<e(*)*Ö(*), *> - Km «2(*)*Ö(0, <t>) 
a 

= lim (Q(x*aa), <t>) = lim {x*aa, 6*(tf>)) 
a 

£ lim sup (x*x, QTtoWiofoa, Q*(<t>))m 

a 

(because Q*(<t>) ^ 0 by (2)) 

= lim sup (Q(x*x), <t>Y'*(QM*Q(.<ia), 4>)m-
a 

Hence Q(x)*Q(x) ^Q(x*x) for x&A. This completes the proof. 
Let <t> be a normal, faithful state on M. For ( )£Q, we shall define a 

state <I>Q on A by 4>Q(X) = $020*0) for xtEA. Let S= {<j>Q\ Q£Q} ; then 
by Lemma 1 we can easily show that 8 is a compact convex subset 
of the state space of A. Let < £ Q ( Q £ 0 ) be an extreme point of 8, and 
let {TQ, § Q } be the ^representation of A on a Hilbert space &Q con­
structed via <i>Q. Then, we shall define a linear mapping of N onto M 
in the following, where N is the weak closure of TQ(A) on ^pg. 

For /Gi f* , we define F(irQ(x)) —f(Q(x)) for x£A. This is well de­
fined, because TQ(X)—0 implies </>Q(X*X) =<£((?(#*#)) ==0 a n d s o 

()(x*x) ^(3(x)*<2(x) = 0 , so tha t Q(x)=0. Then, F is strongly con­
tinuous on bounded spheres (cf. [7]) and so by Lemma 3 in [7], the 
F can be uniquely extended to an element T of iV*, where N* is the 
associated space of N with | | F | | = | | * 1 I -

Put T(f)—F for / £ M # , then T is a bounded linear mapping of 
jtf* into JV*. Let T* be the dual of T, then T* is a continuous linear 
mapping of N with the topology cr(iV, iV*) into M" with the topology 
<r(Af, ikf*). 

LEMMA 2. r * satisfies the following conditions', 
(1) r* (7 r 0 (x ) ) -<2 (x ) /o rxG4 , 
(2) r*(j;*) = T*(y)* for y EN, 
(3) r* (A)àO/o r A(èO)GiV> 

(4) T*(uyv) =zT*(u)T*(y)T*(v) for u, v& the a-weak closure of 
TTQ(B) in N and yE.N, 

(5) T*(y*y)^T*(y)*T*(y)fory&N. 

The proof of this lemma is quite similar with the proof of Lemma 4 
in [7]. 
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LEMMA 3. N is a factor. 

The proof is similar with the proof of Lemma 5 in [7]. Now we 
shall prove Theorem 1. 

PROOF OF THEOREM 1. Let [TTQ(B)IQ] be the closed subspace of 
§ Q generated by ITQ(B)IQ, where IQ is the image of / in § Q and E' be 
the projection of § Q onto [TQ(B)IQ], then E' belongs to the corn-
mutant TTQ(B)' of TQ(B). 

<t>Q(a*bc) = <t>(Q{a*bc)) = <KQ(a)*Q(b)Q(c)) for a, b, c G B 

and Q(B) is <r-weakly dense in Jlf, and so the ^-isomorphism IÏQQ^E' 
—>Ç(&) of TQ(B)E' into Jlf can be uniquely extended to a *-iso-
morphism p of a l/P*-algebra TTQ^BY'E' onto Jlf; therefore 7TQCB)"£' 

and E'TQ(B)'E' are type Ill-factors. 
Let F' be the central envelope of E' in 7TQ(J3)', then F' belongs to 

TQ(J3)" . The mapping rj: %Ff-*xE' ( * G I T Q ( B ) " ) of TTQ(B)"F' onto 
TTQ(B)"E' is a *-isomorphism. Therefore the mapping p-rj of irQ(B)"F' 
onto M is a *-isomorphism. 

Now suppose that N is semifinite, then there is a normal semifinite 
faithful trace r on JV. 

Put JV<,= {e\r(e) < + <*>, e projections in N}. F'E.TrQ(B)" and 
T*(F')?£0, because < r * ( F ) , *> = <^ , T($Q)) = (F'IQy IQ) and 
IQELE'S^QI where ( , ) is the inner product of $ Q . 

Therefore, there is a nonzero projection e0E.N0 such that e0SF' 
and T*(e0) 5*0, and so there is a nonzero projection ^ i n ¥ such that 
\pST*(e0) for some positive number X. 

Suppose tha t a directed set (aa) ( | | Ö « | | ^ 1 , aaE.pMp) converges 
strongly to 0 in Jlf, then {rt~lp-l(aa)} converges strongly to 0 on &Q 
and so {^""V"1^»)^} converges strongly to 0 on § Q ; by the finiteness 
of e0, {eoOrVKfla))*} converges strongly to 0 (cf. [5], [ô]). Then, 

r*((eo(r1p-1(««))*)*(^(r1p-1(««))*)) 
^ r*(«.(r Ip-1(««))*)*r*(e.(ir Ip-1(«-))*) -* 0 (<r-weakly) in Jlf ; 

hence {T*(e0(r,-lp-l(aa))*)} converges strongly to 0 in Jlf. 
For a£Jlf , we choose a bounded directed set {Q(bp)} such that 

frfG-B and Q(bp)->a (tr-weakly) in Jlf, then v-1p-1(Q(h))zss*Q(Pfi)F' 
-vr^ia) (cr-weakly) in TQ(B)"; moreover, ^ O r V r K Q O W ) 
= T*(TTQ%)F) = T*(vQ(bfi)) r* (F ' ) = Q(&,) T*(F')-*aT*(F') (cr-weakly) 
in Jlf; hence a!T*(.F') == T * ^ - ^ 1 ^ ) ) for all aEM. 

Therefore, 

{#r*(e.)*> + (/ - #)}-^2*(«.(ir»p-*(fl«))*) 

- {pT*(e.)p + (/ - #}-vr*(e.)r*0r1p-1(aa))* 
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(because T r ^ C O G I T Q ( B ) " . and T*(e0) T*(F') = T*(e0F') = r*(e0)) 
= {pT*(e0)p + (I-p)}-1pT*(e0)a*=a*a->Q (strongly) in M. 

Hence, the *-operation is strongly continuous on bounded spheres 
of pMpy but pMp is of type I I I . This is a contradiction (cf. [5], [6]). 
This completes the proof. 

Now we shall show 

THEOREM 2. Let A be a C*-algebra. Then the following conditions 
are equivalent: 

(1) A is GCR, 
(2) A is of type I, 
(3) A has no type Ill-factor ^-representation. 

PROOF. (1)=>(2) is Theorem 6 of Kaplansky [4]. (2)=»(3) is clear 
from the definition of type I C*-algebras. Now we shall show that 
(3)=>(1). Suppose that A is not GCR. Let b be the maximum GCR 
ideal of A (cf. [4]), then the quotient algebra A/b has no nonzero 
GCR ideal. If we can show tha t A/b has a type Ill-factor •-repre­
sentation, then A has it: therefore we can assume that b = (0) and 
moreover A has unit I. 

Then by the results of Glimm (Lemmas 4 and 5 and the proof of 
(bl)=Kb2); (bl)=Kb3) of Theorem 1 in [3]), A contains a nontype 
I separable C*-subalgebra B. 

Then by the results of Glimm (pp. 588-589, [3]) and Schwartz [9], 
B has a type Ill-factor *-representation {x, § } o n a separable Hu­
bert space § such that 7r(£)' has the property P in the sense of 
Schwartz and so there is a linear mapping R of the C*-algebra B(J$) 
of all bounded operators on $ onto ir(B)n satisfying the conditions 
(1) R(x*)=R(x)* for xGB(&), (2) R(h)^0 for h ( è O ) G # ( £ ) , 
(3) R(axb) = aR(x)b for a, bE.ir(B)" and * £ £ ( £ ) , and R(I) = I. 

Now let £(||£|| = 1) be a separating and generating vector of ir(B)" 
(cf. [2]) and put X W = (w(a)^ £) for aGB. 

Let x be an extended state of x on 4 and let {wx> § x } be the 
•-representation of A constructed via %• 

Let [T%(B)I%] be the closed subspace of § x generated by TT%(B) 1% 
and E' be the projection of £>x onto [T%(B) J X ] , then the representation 
b—>w(b) of B can be canonically identified with the representation 
b-*w%(b)E' of B. Then R is a linear mapping of J B ( £ ' § X ) onto 
Tx{B)"E'. 

Now we shall define a linear mapping P of TT^(A) into the type I l l -
factor 7T£(J3)"£' as follows:P(TTX(X)) = £ (£ '* - (* )£ ' ) for xEA. Then, 
we can easily show tha t P satisfies the conditions of Theorem 1. 
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Hence the C*-algebra ir%(A) and so A have a type Ill-factor *-repre-
sentation. 

This completes the proof. 
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By an n-configuration we shall mean an abstract set of n elements, 
together with the set of all unordered pairs of distinct elements from 
the set. It is convenient also to use quasi-geometrical terminology 
such as vertex for element, edge or side for a pair (2-tuple), triangle as 
well as triple (3-tuple) for a 3-subconfiguration, and so on. 

The Ramsey number N(p, g, 2) (see [3, pp. 38-43], or [2, pp. 61-
65]), for two kinds h, v of pairs (or two "colors of edges")» is the 
smallest integer such that if n*zN(p, q, 2), then any ^-configuration 
is sure to contain either an h £-tuple (a £-tuple all of whose edges are 
h) or a v g-tuple. Call a p-tuple all of whose edges are alike (h or v) 
a like £-tuple. We introduce, and partially determine the values of, 
new analogous combinatorial numbers K(p, q, 2), M(p, qf 2), and 
V(p> q, 2). 

DEFINITIONS. The number K(p, q, 2) is the smallest integer such 
that if n*zK(p> q, 2), then for each vertex, the configuration is sure 
to contain either a like £-tuple containing the vertex, or a like g-tuple 
not containing the vertex. For three kinds r, g, v of edges, M(p, q, 2) 


