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1. Introduction. Recently, establishing a conjecture of Calkin
[1], the author [7] showed the following result: Let § be a separable
Hilbert space, B(§) the C*-algebra of all bounded operators on 9,
C(D) the C*-algebra of all compact operators on $, then the quo-
tient algebra B(9)/C(9D) has a type I11-factor #-representation. The
discussions which are used in the proof of this result are applicable
to more general situations. In the present paper, by using those dis-
cussions and the result of Glimm [3], we shall give a characterization
of type I C*-algebras without the assumption of separability as
follows:

MaAIN THEOREM. Let A be a C*-algebra. Then the following condi-
tions are equivalent.

(1) A is a GCR algebra,

(2) A is of type 1,

(3) A has no type 111-factor *-representation.

2. Theorems. First of all we shall state a generalization of the re-
sult which are crucial in the proof of Calkin’s conjecture.

THEOREM 1. Let 4 be a C*-algebra with unit I, B a C*-sub algebra
containing I of A and M a type 111-factor on a separable Hibert space.

Suppose that there is a linear mapping P of A into M satisfying the
following conditions:

1) P(x*)=P(x)* for xEA,

(2) P(r) 20 for H(20)EA4,

(3) P(axb) =P(a)P(x)P(b) for a, bEB and xS A,

(4) P(B) is o-weakly dense in M, Then, A has a type 111-factor
*-representation.

The proof of this theorem is similar to the one in [7]. Here we shall
sketch the proof. Let Q be the set of all linear mappings Q of 4 into
M satisfying the conditions (1), (2), (3) and Q(a) =P(a) for a EB.

Let £(4, M) be the Banach space of all bounded linear mappings
of A into M. Then it is the dual of a Banach space A®, My, where
My is the associated space (namely, the dual of My= M) and v is the
greatest cross norm.

Lemma 1. Q s a o(£(4, M), AR, My)-compact convex subset of
£(4, M) and each QEQ satisfies Q(x*x) = Q(x) *Q(x) for xEA.

1 This paper was written with partial support from ONR contract NR-551(57).
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The first part of Lemma 1 is clear. For the last part, by the assump-
tions (1), (3), and (4), and the density theorem of Kaplansky, there
is a direct set (a.) in B such that ||a.| £]|Q®)| and Q(a.)—Q(x)
(strongly) in M. Then, for ¢ (=0)E M,

(Q@)*Q(), ¢) = lim (Q(*)*Q(z), ¢)

= lim (Q(x*a.), ¢) = lim (¥*a., 0*(¢))
< lim sup (x*x, 0*(¢))/%(as*aa, Q*(¢))'/?

(because Q*(¢) Z0 by (2))
= lim sup (Q(«*x), $)!/%(Q(a.)*Q(az), $)*/%

Hence Q(x)*Q(x) £ Q(x*x) for x&A. This completes the proof.

Let ¢ be a normal, faithful state on M. For Q&1, we shall define a
state ¢g on A by ¢o(x) =¢(Q(x)) for xEA4. Let &= {¢»q| Q€Q}; then
by Lemma 1 we can easily show that § is a compact convex subset
of the state space of 4. Let ¢o(Q&EQ) be an extreme point of &, and
let {7rq, .‘{QQ} be the *-representation of 4 on a Hilbert space §q con-
structed via ¢¢. Then, we shall define a linear mapping of N onto M
in the following, where N is the weak closure of mo(4) on De.

For f& My, we define F(mq(x)) =f(Q(x)) for x&A. This is well de-
fined, because wqo(x)=0 implies ¢o(x*x)=¢(Q(x*x))=0 and so
Q(x*x) = Q(x)*Q(x) =0, so that Q(x) =0. Then, F is strongly con-
tinuous on bounded spheres (cf. [7]) and so by Lemma 3 in [7], the
F can be uniquely extended to an element F of N, where Ny is the
associated space of N with || F|| =|| F||.

Put T(f)=F for f& Mx, then T is a bounded linear mapping of
My into Ny. Let T* be the dual of T, then T* is a continuous linear
mapping of N with the topology ¢(NN, Ny) into M with the topology
O'(M, M*) .

LeEMMA 2. T* satisfies the following conditions:

(1) T*(me(x)) =Q(x) for xEA,

(2) T*(y*) =T*(y)* for yEN,

(3) T*(h) 20 for H(20)EN,

4) T*(uyv) =T*(u)T*(y)T*() for u, v& the o-weak closure of
wo(B) in N and yEN,

(8) T*(y*») 2 T*(»)*T*(y) for yEN.

The proof of this lemma is quite similar with the proof of Lemma 4
in [7].
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LeEmMA 3. N is a factor.

The proof is similar with the proof of Lemma 5 in [7]. Now we
shall prove Theorem 1.

ProOF oF THEOREM 1. Let [mo(B)Ig] be the closed subspace of
$q generated by we(B)Ig, where Ig is the image of I in $¢ and E’ be
the projection of $q¢ onto [me(B)Iq], then E’ belongs to the com-
mutant we(B)’ of me(B).

$a(a*bc) = $(Q(a*bc)) = ¢(Q(a)*Q(6)Q(c)) fora, b, c & B

and Q(B) is o-weakly dense in M, and so the *-isomorphism mwq(b) E’
—Q(b) of me(B)E' into M can be uniquely extended to a *-iso-
morphism p of a W*-algebra wo(B)”E’ onto M; therefore wo(B)"'E’
and E'wg(B)'E’ are type III-factors.

Let F’ be the central envelope of E’ in wg(B)’, then F’ belongs to
wo(B)”’. The mapping 7: xF'—xE' (xEme(B)"") of me(B)""F’ onto
wo(B)""E' is a *-isomorphism. Therefore the mapping p -9 of wo(B)"' F’
onto M is a *-isomorphism.

Now suppose that N is semifinite, then there is a normal semifinite
faithful trace 7 on N.

Put N,= {elf(e) <+, e projections in N}. F'Eme(B)” and
T*(F')#0, because (T*(F'), ¢)=(F, T($o))=(FIq, Ig) and
Iq€EE'9q, where ( , ) is the inner product of He.

Therefore, there is a nonzero projection ¢,&N, such that ¢, < F’
and T*(e,) #0, and so there is a nonzero projection p in M such that
A\p = T*(e,) for some positive number A.

Suppose that a directed set (aa) (||a| <1, 6.EpMp) converges
strongly to 0 in M, then {n‘lp—l(aa)} converges strongly to 0 on $q
and so {n—lp‘l(aa) ¢,} converges strongly to 0 on $q; by the finiteness
of eo, {es(n'p1(as))*} converges strongly to 0 (cf. [5], [6]). Then,
T* (ool (@) *ealr™s™(02))"))

Z T*(eo(n"p"(2))*)*T*(eo(n~"p"(2a))*) — O (o-weakly) in M;
hence {T*(e,(n—lp—l(aa))*)} converges strongly to 0 in M.

For aE M, we choose a bounded directed set {Q(bﬂ)} such that
bsEB and Q(bg)—a (o-weakly) in M, then 5~p~1(Q(b)) =mqe(bs) F’
—n~ (@) (o-weakly) in me(B)"'; moreover, T*(n~%~*(Q(bs))
= T"*(mq(bs) F') = T*(mq(bp)) T*(F') = Q(bp) T*(F') —>aT*(F') (o-weakly)
in M; hence aT*(F') =T*(n"'p~(a)) for all aE M.

Therefore,

{pT*(ep + (I — )} pT*(eolr~~(30))*)
= {pT*(e)p + (I — §)}pT*(e) T* ("o~ (2e))*
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(because 77~ (@) Eme(B)”’, and T*(e,) T*(F') =T*(e.F') = T*(e,))
= {pT*(e)p+ (T —p) }pT*(ec)ak=a%—0 (strongly) in M.

Hence, the *-operation is strongly continuous on bounded spheres
of pMp, but pMp is of type I11. This is a contradiction (cf. [5], [6]).
This completes the proof.

Now we shall show

THEOREM 2. Let A be a C*-algebra. Then the following conditions
are equivalent:

(1) 4 is GCR,
(2) A is of type 1,
(3) A4 has no type 111-factor s-representation.

ProOF. (1)=>(2) is Theorem 6 of Kaplansky [4]. (2)=(3) is clear
from the definition of type I C*-algebras. Now we shall show that
(3)=(1). Suppose that 4 is not GCR. Let b be the maximum GCR
ideal of 4 (cf. [4]), then the quotient algebra A/ has no nonzero
GCR ideal. If we can show that 4 /b has a type III-factor *-repre-
sentation, then A4 has it: therefore we can assume that b=(0) and
moreover 4 has unit I.

Then by the results of Glimm (Lemmas 4 and 5 and the proof of
(b1)=>(b2); (b1)=>(b3) of Theorem 1 in [3]), 4 contains a nontype
I separable C*-subalgebra B.

Then by the results of Glimm (pp. 588-589, [3]) and Schwartz [9],
B has a type III-factor *-representation {1r, @} on a separable Hil-
bert space § such that w(B)’ has the property P in the sense of
Schwartz and so there is a linear mapping R of the C*-algebra B(9)
of all bounded operators on § onto w(B)" satisfying the conditions
(1) Rx*)=R(x)* for x€B(9), (2) R(h) 20 for r (20)EB(9),
(3) R(axb) =aR(x)b for a, bEw(B)" and xEB(9), and R(I)=1.

Now let E(I]EH =1) be a separating and generating vector of w(B)"’
(cf. [2]) and put x(a) = (w(a)t, £) for a EB.

Let x be an extended state of x on 4 and let {7rx, @x} be the
*-representation of 4 constructed via .

Let [m3(B)I;] be the closed subspace of ©y generated by m5(B)I;
and E’ be the projection of $;onto [wi(B)I %], then the representation
b—w(b) of B can be canonically identified with the representation
b—myz(b)E" of B. Then R is a linear mapping of B(E'®y) onto
7%(B)"'E’.

Now we shall define a linear mapping P of 73(4) into the type III-
factor w3 (B)"E’ as follows: P(wy(x)) = R(E'wy(x)E') for x€A. Then,
we can easily show that P satisfies the conditions of Theorem 1.
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Hence the C*-algebra m3(4) and so 4 have a type I1I-factor *-repre-
sentation.
This completes the proof.
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By an n-configuration we shall mean an abstract set of # elements,
together with the set of all unordered pairs of distinct elements from
the set. It is convenient also to use quasi-geometrical terminology
such as vertex for element, edge or side for a pair (2-tuple), iriangle as
well as triple (3-tuple) for a 3-subconfiguration, and so on.

The Ramsey number N(p, ¢, 2) (see [3, pp. 38-43], or [2, pp. 61—
65]), for two kinds %, v of pairs (or two “colors of edges”), is the
smallest integer such that if » = N(p, ¢, 2), then any #n-configuration
is sure to contain either an h p-tuple (a p-tuple all of whose edges are
k) or a v g-tuple. Call a p-tuple all of whose edges are alike (% or v)
a like p-tuple. We introduce, and partially determine the values of,
new analogous combinatorial numbers K(p, ¢, 2), M(p, ¢, 2), and
V(p, g, 2).

DeriNITIONS. The number K(p, ¢, 2) is the smallest integer such
that if = K(p, q, 2), then for each vertex, the configuration is sure
to contain either a like p-tuple containing the vertex, or a like g-tuple
not containing the vertex. For three kinds 7, g, v of edges, M(p, g, 2)



