SELF-EQUIVALENCES OF ($n-1$)-CONNECTED $2 n$-MANIFOLDS ${ }^{1}$

BY P. J. KAHN
Communicated by J. Milnor, Janauary 31, 1966

1. Introduction and statement of main results. All spaces have basepoints, and all maps of spaces are basepoint-preserving. A selfequivalence of a space X is a homotopy class of homotopy equivalences $X \rightarrow X$. Map-composition induces an operation on the set of self-equivalences of X, making it into a group, $\varepsilon(X)$.

Arkowitz and Curjel [1] and Weishu Shih [7] have obtained certain general results about $\varepsilon(X)$ by studying the Postnikov decomposition of X. More recently P. Olum [5] presented an explicit computation of $\varepsilon(X)$ in the case that X is a pseudo-projective plane.

Our results concern the structure of $\varepsilon(X)$ in the case that X is a closed, compact, oriented, $C^{\infty},(n-1)$-connected $2 n$-manifold, $n \geqq 2$. We place these restrictions on X throughout the rest of this paper. Our methods are dual to those of [1] and [7] in the sense that we proceed by examining a cell-decomposition of X.

A word about notation: X_{n} is the n-skeleton of X in some fixed, minimal CW-decomposition of $X, S X_{n}$ is its suspension, and $\pi\left(S X_{n}, X\right)$ is the group of homotopy classes of maps $S X_{n} \rightarrow X$.

Theorem 1. There is an exact sequence,

$$
\pi\left(S X_{n}, X\right) \xrightarrow{(S b)^{*}+\Psi} \pi_{2 n}(X) \xrightarrow{\rho} \varepsilon(X) \xrightarrow{R} \varepsilon\left(X_{n}\right),
$$

the homomorphisms of which will be described in $\S 2$.
It is easy to show that $\pi_{2 n}(X)$ is finite.
Corollary to Theorem 1. Kernel R is finite.
X_{n} is a one-point union of (at least two) n-spheres, so that $H_{n}\left(X_{n}\right)$ $=H_{n}(X)$ is finitely generated free abelian. Moreover, it is easy to show that the homology functor H_{n} takes $\mathcal{E}\left(X_{n}\right)$ isomorphically onto the group of automorphisms of $H_{n}(X)$. We call this automorphism group $\operatorname{Aut}\left(H_{n}(X)\right)$.

Let $\mu: H_{n}(X) \otimes H_{n}(X) \rightarrow Z$ be the integral bilinear form determined by the intersection pairing on $H_{n}(X)$. Wall [8] shows that μ, together with a certain function $H_{n}(X) \rightarrow \pi_{2 n-1}\left(S^{n}\right)$, completely deter-

[^0]mines the homotopy type of X. For algebraic convenience, we modify this function slightly, obtaining a homomorphism c on $H_{n}(X)$, which together with μ also determines the homotopy type of X. We do not define c here.

Let $\operatorname{Aut}(\mu, c)$ be the subgroup of $\operatorname{Aut}\left(H_{n}(X)\right)$ consisting of all automorphisms that preserve c and that, up to sign, preserve μ.

Theorem 2. The functor H_{n} maps image R isomorphically onto $A u t(\mu, c)$.

Theorem 3. Aut (μ, c) is finitely generated. If n is even and μ is a definite quadratic form, or if n is even and μ has rank two and index zero, then $\operatorname{Aut}(\mu, c)$ is finite. Otherwise, $\operatorname{Aut}(\mu, c)$ is infinite.

Combining Theorems 2 and 3 with the fact that kernel R is finite, we obtain the following:

Corollary to Theorem 3. Theorem 3 holds for $\mathcal{E}(X)$ in place of $\operatorname{Aut}(\mu, c)$.

Let $\mathscr{D}(X)$ be the subgroup of $\mathcal{E}(X)$ consisting of all classes represented by diffeomorphisms $X \rightarrow X$.

Theorem 4. Suppose that $n \equiv 2(\bmod 4), n \neq 2$. There is a number k, depending only on n and on rank $\left(H_{n}(X)\right)$, such that the index of $\mathscr{D}(X)$ in $\mathcal{E}(X)$ is less than k.

Corollary to Theorem 4. Under the above restriction on n, Theorem 3 holds for $\mathfrak{D}(X)$ in place of $\operatorname{Aut}(\mu, c)$.

Examples.
(a) Let $C P^{n}$ be complex projective n-space. Using the exact sequence of Theorem 1, together with well-known facts about the homotopy type of $C P^{2}$, it is easy to calculate that $\mathcal{E}\left(C P^{2}\right) \cong Z_{2}$.

Indeed, an easy but unrelated argument shows that $\mathcal{E}\left(C P^{n}\right) \cong Z_{2}$, for all $n \geqq 1$.
(b) Let $K P^{n}$ be quaternion projective n-space. Using Theorem 1 again, together with certain accessible but less well-known facts about the homotopy type of $K P^{2}$, one may calculate that $\mathcal{(}\left(K P^{2}\right) \cong Z_{2}$.

In contrast to the above example, however, image R here is trivial. This implies:

Proposition 1. Every homotopy equivalence $f: K P^{n} \rightarrow K P^{n}, n \geqq 2$, induces the identity automorphism of cohomology.
(c) We determine $\mathcal{E}\left(S_{1}^{n} \times S_{2}^{n}\right), n \geqq 2$. In this case, X_{n} is the one-point union $S_{1}^{n} \vee S_{2}^{n}$. We need some notation:
i is the homotopy class of the inclusion $S_{1}^{n} \vee S_{2}^{n} \rightarrow S_{1}^{n} \times S_{2}^{n}$;
e_{l} is the element of $\pi_{n}\left(S_{1}^{n} \bigvee S_{2}^{n}\right)$ represented by the inclusion of S^{n} onto $S_{l}^{n}, l=1,2$;
x is the homotopy class of the Hopf map $S^{3} \rightarrow S^{2}, S^{n-2} x$ its ($n-2$)-fold suspension;
ι_{n} is the homotopy class of the identity map $S^{n} \rightarrow S^{n}$;
$[\alpha, \beta]$ is the Whitehead product of homotopy classes α and β;
Δ_{8} is the dihedral group of order eight, a group on two generators a and b satisfying $a^{4}=b^{2}=a b^{-1} a b=1$;
Sym is the group of integral 2×2 matrices generated by

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \quad(c f .,[3]) ;
$$

Δ will be the image of the homomorphism $(S b)^{*}+\psi$ of Theorem 1.

Proposition 2. (i) Δ is trivial if $n=2,6$ or $n \equiv 3(\bmod 4)$. Otherwise $\Delta \cong Z_{2} \oplus Z_{2}$ and is generated by

$$
i \circ e_{1} \circ\left[S^{n-2} x, \iota_{n}\right] \quad \text { and } \quad i \circ e_{2} \circ\left[S^{n-2} x, \iota_{n}\right] .
$$

(ii) If n is odd, image $R \cong S y m$, whereas if n is even, image $R \cong \Delta_{8}$.
(iii) The following sequence is split-exact:

$$
0 \rightarrow \pi_{2 n}\left(S_{1}^{n} \times S_{2}^{n}\right) / \Delta \xrightarrow{\rho} \varepsilon\left(S_{1}^{n} \times S_{2}^{n}\right) \xrightarrow{R} \text { image } R \rightarrow 0
$$

The action of Sym or Δ_{8} on $\pi_{2 n}\left(S_{1}^{n} \times S_{2}^{n} / \Delta\right.$ can be computed explicitly, so that in the range of values of n for which $\pi_{2 n}\left(S^{n}\right)$ is known, $n \geqq 2, \varepsilon\left(S_{1}^{n} \times S_{2}^{n}\right)$ can be completely determined.
(d) We present an example of a ($4 k-1$)-connected $8 k$-manifold $M, k \geqq 2$, such that the index of $\mathscr{D}(M)$ in $\mathcal{E}(M)$ is $\geqq 8$.

Choose any of the manifolds M constructed in [4] such that (i) M is homotopically equivalent to $S_{1}^{4 k} \times S_{2}^{4 k}$; (ii) the Pontrjagin class $p_{k}(M)=a e_{1}^{*}+b e_{2}^{*}$, where $0 \neq a \neq \pm b \neq 0$ and e_{l}^{*} is the generator of $H^{4 k}(M)$ corresponding, via the given homotopy equivalence, Poincaré duality, and the Hurewicz isomorphism, to the homotopy class e_{l} described in (c), $l=1,2$.

It is easy to show that, of all the members of image $R \cong \Delta_{8}$, only the identity induces an automorphism of cohomology that keeps $p_{k}(M)$ fixed. Since diffeomorphisms induce cohomology isomorphisms that keep Pontrjagin classes fixed, $R(D(M))$ is trivial, from which the result follows.
2. Description of the homomorphisms and of the proof of Theorem 1.

Definition of $R: \varepsilon(X) \rightarrow \varepsilon\left(X_{n}\right) . R(f)$ is the homotopy class of the restriction to X_{n} of any cellular representative of f. J. H. C. Whitehead's Cellular Approximation Theorem implies that R is well-defined.

Definition of $\rho: \pi_{2 n}(X) \rightarrow \mathcal{E}(X)$. As a CW-complex, $X=X_{n} \cup e^{2 n}$, where the cell $e^{2 n}$ is attached to X_{n} by a map $b: S^{2 n-1} \rightarrow X_{n}$. Therefore, we may identify X with the reduced mapping cone of b. Pinching together all points halfway up the cone, we obtain $S^{2 n} \bigvee X$ and a projection $\pi: X \rightarrow S^{2 n} \bigvee X$. Given any $a: S_{n}{ }_{n} \rightarrow X$, it determines a map $(a \vee 1) \circ \pi: X \rightarrow X$, where 1 is the identity map of X. Passing to homotopy classes, the association $a \rightarrow(a \vee 1) \circ \pi$ determines the homomorphism ρ (cf. [1], and [2, p. 179]).

Definition of $(S b)^{*}:\left[S X_{n}, X\right] \rightarrow \pi_{2 n}(X) . b: S^{2 n-1} \rightarrow X_{n}$ is the attaching map of $e^{2 n}$, as above, $S b$ is its suspension, and ($\left.S b\right)^{*}$ is determined by right composition with $S b$.

Definition of $\bar{\psi}:\left[S X_{n}, X\right] \rightarrow \pi_{2 n}(X)$. We introduce notation analogous to that of example (c), above:
i is the homotopy class of the inclusion $X_{n} \subset X$;
e_{k} is the homotopy class of the inclusion of S^{n} onto the k th sphere of the one-point union of n-spheres X_{n};
$S \alpha$ is the suspension of α, and $[\alpha, \beta]$ is the Whitehead product of α, β;
($\Gamma_{l k}$) is the unimodular matrix determined by the cup product of $H^{*}(X)$ with respect to the basis of $H^{n}(X)=\operatorname{Hom}\left(H_{n}(X), Z\right)$ dual to $\left\{e_{1}, e_{2}, \cdots\right\} \subset \pi_{n}\left(X_{n}\right)=H_{n}\left(X_{n}\right)=H_{n}(X)$. Then, we define ψ by

$$
\Psi(x)=\sum_{l, k} \Gamma_{l k}\left\lfloor x \circ S e_{l}, i \circ e_{k}\right] .
$$

ψ arises roughly because of the failure of right composition with b to determine a homomorphism $\pi\left(X_{n}, X\right) \rightarrow \pi_{2 n-1}(X)$.

Remarks on the Proof of Theorem 1. The proof of Theorem 1 is an easy obstruction-theoretic exercise until one gets to proving exactness at $\pi_{2 n}(X)$. At this point it is necessary to characterize a certain obstruction set (see [2, p. 185]). It is not at all difficult to show that this set is some homomorphic image of $\left[S X_{n}, X\right]$. The difficulty lies in showing that the homomorphism is $(S b)^{*}+\bar{\psi}$.

The arguments in this proof can be generalized. However, in general, image R will not have so simple a description as that supplied by Theorem 2.

Bibliography

1. M. Arkowitz and C. Curjel, The group of homotopy equivalences of a space, Bull. Amer. Math. Soc. 70 (1964), 293-296.
2. Sze-tsen Hu, Homotopy theory, Academic Press, New York, 1959.
3. L. K. Hua and I. Reiner, On the generators of the symplectic modular group, Trans. Amer. Math. Soc. 65 (1949), 415-426.
4. P. J. Kahn, Characteristic numbers and oriented homotopy type, Topology 3 (1965), 81-95.
5. P. Olum, Self-equivalences of pseudo-projective planes, Topology 4 (1965), 109127.
6. D. Puppe, Homotopiemengen und ihre induzierten Abbildungen. I, Math. Z. 69 (1958), 299-344.
7. Weishu Shih, On the group \& [X] on homotopy equivalence maps, Bull. Amer. Math. Soc. 70 (1964), 361-365.
8. C. T. C. Wall, Classification of ($\mathrm{n}-1$)-connected 2 n -manifolds, Ann. of Math. (2) 75 (1962), 163-182.

Cornell University

THE SOLUTION BY ITERATION OF LINEAR FUNCTIONAL EQUATIONS IN BANACH SPACES ${ }^{1}$

BY F. E. BROWDER AND W. V. PETRYSHYN

Communicated December 20, 1965
Let X be a Banach space (real or complex), T a bounded linear operator from X to X. We are concerned with the solution of the equation

$$
\begin{equation*}
u-T u=f \tag{1}
\end{equation*}
$$

by the iteration process of Picard-Poincare-Neumann,

$$
\begin{equation*}
x_{n+1}=T x_{n}+f \quad\left(x_{0} \text { given }\right) \tag{2}
\end{equation*}
$$

i.e. with the convergence of the sequence

$$
x_{n}=T^{n} x_{0}+\left(f+T f+\cdots+T^{n-1} f\right)
$$

By an earlier result of the first-named author (Browder [2]), if X is reflexive, a solution u for the equation (1) will exist for a given element f of X and an operator T which is asymptotically bounded (i.e. $\left\|T^{k}\right\| \leqq M$ for some $M>0$ and all $k \geqq 1$) if and only if the sequence $\left\{x_{n}\right\}$ is bounded for any fixed x_{0}. Our object in the present paper is to

[^1]
[^0]: ${ }^{1}$ This work was partly supported by NSF grant GP 3685.

[^1]: ${ }^{1}$ The preparation of this paper was partially supported by NSF Grant GP-3552.

