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Let I b e a Banach space (real or complex), T a bounded linear 
operator from X to X. We are concerned with the solution of the 
equation 

(1) u-Tu-f, 

by the iteration process of Picard-Poincaré-Neumann, 

(2) Xn+1 — Txn+f (%o given), 

i.e. with the convergence of the sequence 

*n = T»xo +(f+Tf+ • • • + T»~V). 

By an earlier result of the first-named author (Browder [2]), if X is 
reflexive, a solution u for the equation (1) will exist for a given ele­
ment ƒ of X and an operator T which is asymptotically hounded 
(i.e. || rfc|| â M for some M> 0 and all k g: 1) if and only if the sequence 
{xn} is bounded for any fixed x0. Our object in the present paper is to 

1 The preparation of this paper was partially supported by NSF Grant GP-3552. 
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sharpen this conclusion under a slightly sharper hypothesis on T 
(without any assumption of reflexivity on X) and to derive a number 
of interesting applications of this result in the domain of numerical 
functional analysis. 

THEOREM 1. Let X be a Banach space, T a bounded linear operator in 
X which is asymptotically convergent, i.e. Tkx converges in X as k—» oo 
for each x in X. Then: 

(a) If f is an element of the range of (I--T), the sequence {#»} de­
fined above for any initial approximation x0 will converge to a solution 
u of the equation u — Tu =ƒ. 

(b) If any subsequence {xni} of the sequence converges to an element 
y of X, then y is a solution of y — Ty~f, and the whole sequence con­
verges. 

(c) If X is reflexive and the sequence {xn} is bounded, then the se­
quence {xn} converges to a solution of the equation (1). 

REMARK. Let us underline the practical importance of the conclu­
sion (b) of Theorem 1, which allows the testing of the convergence 
of the Picard iteration sequence by any infinite subsequence, a 
method which is not obviously applicable without Theorem 1. 

PROOF OF THEOREM 1. Since Tnx—>Qx for each x in X, it follows 
from the uniform boundedness theorem that there exists M such 
that || rn | | g M for all n à 1, while Q is a bounded linear operator from 
X to X. For each w in the conjugate space -X"* of X, we have 

(x, (T*)nw) = (Tnx, w) -> (Qx, w) = (x, Q*w), 

i.e. (T*)nw converges weakly to Q*w. Hence 

(T2nx, w) = (Tnx, (T*)nw) -» (Qx, Q*w) = (Q2x, w), 

from which it follows that T2nx converges weakly to Q2x, i.e. Q = Q2. 
Moreover QTx = limn Tn+1x = Qx^TQx, i.e. Q = QT=TQ. Thus, Q is 
an idempotent whose range is contained in N(I—T), the nullspace 
of I—T, and obviously coincides with this nullspace. 

PROOF OF (a). Suppose ƒ lies in R(I— T), the range of (I—T). Then 
f=u — Tu for some u in X. Let 

sn(J) - 2 r>(/). 

We have 

Xn = T"Xo + Sn(f) 
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and 

Sn(J) **U- TnU. 

Since Tnx0—>Qx0, Tnu—>Qu, it follows that xn—>u — Q(u—x0), which 
is a solution of equation (1). q.e.d. 

PROOF OF (b). Suppose {xwy} is a convergent subsequence of xn 

with limit y. Then : 

Xn$ « Tn*X0 + £«,(ƒ), 

and Snj(f)—>y — QXQ. Since 

Qxn. = QT^xo + QSnj(f) = Qxo + n&f, 

it follows tha t Qf=0. Moreover, we have 

(/ - T)Sn,(J) =f-T»if-+f-Qf = ƒ. 

Hence 

(/ - 20(y - Qxo) = (/ - T)y = ƒ. q.e.d. 

PROOF OF (C). By the result of [2], if X is reflexive and T is asymp­
totically bounded, the boundedness of {xn} implies that ƒ lies in 
R(I-T). We then apply (a), q.e.d. 

We pass now to the verification of the hypotheses of Theorem 1 
for particular classes of operators T. A useful auxiliary result for this 
purpose is the following: 

THEOREM 2. Let T be a continuous linear operator on a Banach 
space X for which ( — 1) is not an eigenvalue and such that T2nx con-
verges as n—* <*> for each x in X. Then T is asymptotically convergent 
and satisfies the conclusions of Theorem 1 : 

PROOF OF THEOREM 2. By hypothesis, T2nx converges to Qx. 
Furthermore, T2n+1x = T2n(Tx) converges to Q(Tx). I t follows as in 
the proof of Theorem 1 tha t Q is a projection operator on N(I—T2) 
and tha t Q commutes with T. Since ( — 1) is not an eigenvalue of 
T, N(I-T2)=N(I-T). Thus QT = Q, and Tnx->Qx. q.e.d. 

REMARK. For T to be asymptotically convergent, it is necessary 
tha t ( — 1) not be an eigenvalue of T. 

THEOREM 3. Let H be a Hubert space, T a self-adjoint contraction on 
iJ , i.e. | | r | | ^ l . Then T is asymptotically convergent if and only if 
( — l)is not an eigenvalue of T. More generally, the same conclusion holds 
if T is a scalar operator in the sense of Dunford [3] which has real 
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spectrum and is asymptotically bounded. In particular, the results of 
Theorem 1 hold for these classes of operators. 

PROOF OF THEOREM 3. If T is self-adjoint with | | r | | g l , then 
0 ^ T2 ^ 7. Thus T2n is a monotone decreasing sequence of nonnega-
tive self-ad joint operators and therefore strongly convergent [6, p. 
261]. We apply Theorem 2 to complete the self-adjoint case. 

If T is a scalar operator in the sense of Dunford with real spectrum 
on a Hilbert space iJ, T = ASA~l for a self-adjoint operator S and A 
continuously invertible. Then Tn = ASnA~1, and it suffices to show 
tha t | |5 | | ^ 1, since S has the same spectrum as T, and the same eigen­
values. Since T is asymptotically bounded, so is S, but a self-ad joint 
operator 5 is asymptotically bounded if and only if | |S| | :gl . q.e.d. 

Theorem 3 for the self-ad joint case is a strengthening of results 
of Krasnoselski [4], Bialy [ l ] , and Petryshyn [5]. Unlike the 
proofs of Krasnoselski and Bialy, in particular, no detailed use is 
made of the explicit spectral representation of T. The passage from 
convergence of a subsequence to convergence of the whole sequence 
seems new even in the cases already treated in the above papers. 

We now give another application outside of the Hilbert space 
framework, and based on results of E. M. Stein [8] and G. C. 
Rota [7]. 

THEOREM 4. Let (Î2, 2 , JU) be a positive measure space, T a self-
adjoint operator in L2(M) which maps Ll(ix) into itself with norm ^ 1 . 
Then for any p with Kp<<x>, if ( — 1) is not an eigenvalue of T in 
Lv{p), then T is asymptotically convergent in LV(JX) and the conclusions 
on the convergence of the Picard approximants given in Theorem 1 are 
valid for T in LP (M)-

PROOF OF THEOREM. By Theorem 2, it suffices to show the con­
vergence of Sn with 5 = T2. S is a nonnegative self-ad joint operator in 
L2(JU) and its norm in Ll{y) is not greater than 1. Hence by Corollary 
1, p. 1895 of [8], Sn converges strongly in Lp(/x) for every p with 
Kp< oo. q.e.d. 

As a final application, we give two results of interest in numerical 
applications. 

THEOREM 5. Let T be a self-adjoint contraction in a Hilbert space H 
with ( — 1) not an eigenvalue of T. Consider the iteration scheme for any 
Xo in H given by 

yk = T2 -1y*-i + U++(j), yt « xo, 
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with 

U*-i = (/ + T*~*)Ur* Ui = / . 

Then {yk} converges if and only if the equation u — Tu—f has a 
solution. 

PROOF OF THEOREM 5. The element y* = #2* for the Picard se­
quence. 

THEOREM 6. Let H be a Hilbert space, B a bounded linear operator in 
jfiT, a a real parameter such that 0 < a < 2 / | | 3 * 5 | | , and let P denote the 
orthogonal projection of H onto the closure of R(B). For any given xQ in 
H, determine the sequence {uk} by the process 

m = xoy uk = T2 Mk-i + U^ ƒ, 

where 

ƒ = - aB*g, T = / - aB*B, 

and J72* is defined in terms of T as in Theorem 5. Then {uk} converges 
to a solution of Bx = Pg if and only if the latter equation has a solution. 

The proof of Theorem 6 is obtained by applying Theorem S to the 
self-ad joint operator T. 
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