
THE SOLUTION BY ITERATION OF NONLINEAR 
FUNCTIONAL EQUATIONS IN BANACH SPACES1 

BY F. E. BROWDER AND W. V. PETRYSHYN 

Communicated January 11, 1966 

Introduction. Let I b e a Banach space, T a (possibly) nonlinear 
mapping of X into X, We are concerned with the solvability of the 
equation 

(1) u-Tu=f 

for a given element ƒ of X and its relation to the properties of the 
Picard iterates for the Equation (1), i.e. the sequence {xn} where 

(2) xn+1 = Txn + ƒ, x0 given. 

In a preceding note on the linear case [8], we established the fol
lowing facts for linear T: 

(a) If X is reflexive and T is asymptotically bounded (i.e. || Tn\\ ^ M 
for some constant M and all nèzl), then the Equation (1) has a 
solution u for a given ƒ if and only if for any specific #o> the sequence 
of Picard iterates {xn} starting with x0 is bounded in X (see [2]). 

(b) For a general Banach space X, if T is asymptotically con
vergent (i.e. Tnx converges strongly in X for each x in X as n—> + oo), 
the sequence of Picard iterates {xn} for a given x0 converges if and 
only if the equation (1) has a solution. 

(c) For a general Banach space X and T asymptotically con
vergent, if an infinite subsequence of the sequence {xn} converges, 
then the whole sequence converges to a solution of Equation (1). 

Our object in the present note is to give some partial extensions of 
these results to a general class of nonlinear operators T, and to indi
cate some interesting examples of the application of these nonlinear 
results. 

THEOREM 1. Let T be a nonexpansive nonlinear mapping of X into 
X, {i.e. ||Tx — Ty\\ ^\\x—y\\ for all x and y in X), and suppose that X 
is uniformly convex. Then the Equation (1) has a solution u for a given 
ƒ in X if and only if for any specific Xo in X, the sequence of Picard 
iterates {xn} starting at x0 is bounded in X. 

PROOF OF THEOREM 1. Let Tf be the mapping of X into X given 
by T/(u) = Tu+f. Then u is a solution of Equation (1) if and only if 

1 The preparation of this paper was partially supported by NSF Grant GP-3552. 
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u is a fixed point of T/t and Tf like T is a nonexpansive self-mapping 
of X. If Tf has such a fixed ponit w, then for each n*zlf 

(3) ||*n+1 - M|| = ||!>(*„) - 2>(«)|| g ||*„ - «||. 

Hence the sequence {xn} is bounded. The converse is a corollary, due 
to Belluce and Kirk [ l ] , of the result established independently by 
Browder [6] and Kirk [9] that every nonexpansive self-mapping of 
a nonempty bounded close convex subset C of a uniformly convex 
space has a fixed point. Indeed, let d be the diameter of the set xn, 
and for each x in X% let Da{x) be the closed ball of radius d about x. 
If Ck = C\jzk Dd(xj), Ck is nonempty and convex for each k, and 
Tf(Ck) CGb+i. Let C be the closure of the union of Ck for k ^ 1. Since 
Ck increases with ife, C is a closed bounded convex subset of X. Since 
T/ maps C into C, T/ has a fixed point in C. q.e.d. 

DEFINITION 1. Tfee mapping T is said to be asymptotically regular if 
for each x in Xy Tn+1x—Tnx—>0 strongly in X as n—>+ oo. T is said to 
be weakly asymptotically regular if rw+1x— Tnx—»0 weakly in X as 
n-*+ oo for each x in X. 

THEOREM 2. Let Xbea Banach space, T a nonexpansive mapping of 
X into X. For a given f in X, let T/(u) = T(u) +ƒ, and suppose that the 
mapping Tf is weakly asymptotically regular. Let xn = TJXQ be the se
quence of Picard iterates f or the Equation (1) starting with x0, and sup
pose that an infinite subsequence of the sequence {xn} converges strongly 
to an element y of X. 

Then y is a solution of Equation (1) and the whole sequence {xn} 
converges strongly to y. 

PROOF OF THEOREM 2. If « is a solution of equation (1), i.e. a fixed 
point of T/, then by Equation (3) above 

| | ffn + l - u\\ S \\%n — u\\. 

If an infinite subsequence of {xn} converges to u, it follows that the 
whole sequence converges to u. Hence it suffices to show that the 
limit y of the convergent subsequence {#«*} of {xn} is indeed a fixed 
point of Tf. 

By the assumption of weak asymptotic regularity of Tf, however, 
we know tha t 

weakly in X as w—>+ oo. Since xnk-^y strongly in X and (I—Tf) is 
continuous from X to X in the strong topology, (I—Tf)(xnk) 
—»(!•— Tf)(y) strongly in X. Hence (I—Tf)(y) = 0 . q.e.d. 
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DEFINITION 2. The mapping S of X into X is said to be demiclosed 
if for any sequence {un} in X with un—>u weakly in X, Sun-*v strongly 
in X, we have Su = v. 

THEOREM 3. Let X be a Banach space, T a nonexpansive mapping 
of X into X such that for a given f in X, Tf is asymptotically regular and 
(J— Tf) is demiclosed. Let F be the set of fixed points of Tf, and {xn} the 
sequence of Picard iterates for Tf starting at x0. Suppose that Tf has at 
least one fixed point. 

Then the weak limit of any weakly convergent subsequence of {xn} lies 
in F. In particular, if X is reflexive and F consists of exactly one point y, 
{xn} converges weakly to y. 

PROOF OF THEOREM 3. Suppose F is nonempty and let {xnj} be a 
weakly convergent subsequence of {xn} with weak limit u. By the 
asymptotic regularity of Tf, (I—Tf)(xnj)—*0 strongly in X. Since Tf 
is demiclosed by hypothesis, it follows tha t (I—Tf)u — 0, i.e. u lies 
in F. 

If X is reflexive, each infinite subsequence of {xn} contains a 
weakly convergent subsequence whose limit lies in F. If F consists of 
a single point, it follows tha t xn converges to tha t point weakly in 
X. q.e.d. 

THEOREM 4. Let H be a Hilbert space, Ta nonexpansive self-mapping 
of H such that Tf is asymptotically regular for a given ƒ in H and has a 
nonempty fixed point set F. Then the weak limit of any weakly con
vergent subsequence of {xn} lies in F. In particular, if F consists of a 
single point u, then xn converges weakly to u. 

More generally, these conclusions are valid for any Banach space X 
having a weakly continuous duality mapping ([7]). 

PROOF OF THEOREM 4. I t has been shown in Browder [4] using the 
theory of monotone operators in Hilbert space tha t if Tf is a non
expansive mapping, then {I—Tf) is demiclosed. We then apply 
Theorem 3. (For further applications of the theory of monotone 
operators to the study of nonexpansive mappings, see Browder [3], 
[5].) The same conclusion is obtained for Banach spaces X having a 
weakly continuous duality mapping / (e.g. the spaces lp for 1 <p 
< + oo) in Browder [7] using the theory of /-monotone operators, 
q.e.d. 

THEOREM 5. Let X be a uniformly convex Banach space, T a non
expansive self-mapping of X with a nonempty set F of fixed points. For a 
given constant X with 0 < \ < 1 , let S\=\I+(l—\)T. 

Then S\ is asymptotically regular and has the same fixed points as T. 
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Hence the fixed points of T can be obtained from iteration of 5\, for 
which the conclusions of Theorems 1-4 can be applied. 

PROOF OF THEOREM 5. It is obvious that the fixed point sets of T 
and S\ coincide and that 5\ is also a nonexpansive self-mapping of X. 

Let u be a fixed point of 7\ and for a given x in X, let xn = S£x. 
Since S\ is nonexpansive and u is a fixed point of S\} it follows that 
||#n+i —#|| â||x«—#|| for all n} and hence that | |xn~#|| converges to a 
nonnegative limit do. Suppose that d0>0. Since 

Xn+l — # = S\(ffn) ~ # = X(#» — #) + (1 — A)(r#n — *) 

and since 

|| Xn ~ # | | - » </o, ||^n+l ~ « | | - » <*0, || r # « — #| | ^ ||#n — *| | , 

it follows from the uniform convexity of X that 

IK*»-*) - (Tx»-u)\\->0, 
i.e. #n — rxn-~>0 strongly in X. Hence xn+i-—xn—>0 strongly in X, i.e. 
S\ is asymptotically regular, q.e.d. 

REMARK. For compact nonexpansive mappings T, the mapping 5\ 
with X== 1/2 and its iterates were first studied by Krasnoselskiï [lO]. 
For general X, these mappings have been studied for compact T by 
Schaefer [12] and for demicompact T by Petryshyn [ l l ] . All these 
results follow from the following: 

THEOREM 6. Let Xbea Banach space, T a nonexpansive mapping of 
X into X which is asymptotically regular. Suppose that the fixed point 
set F of T is nonempty and that (I— T) maps bounded closed subsets of 
X into closed subsets of X. 

Then for each x0 in X, the sequence TnXo converges strongly in X to a 
fixed point of T. 

PROOF OF THEOREM 6. If # is a fixed point of 7\ ||rn#o—#|| does 
not increase with n. It suffices therefore to show that there exists a 
subsequence of TnXo which converges strongly to a fixed point of T. 
Let G be the strong closure of the set {Tnx0}. By the asymptotic 
regularity of T\ (I—T)(TnXo) converges strongly to 0 as n—>+oo. 
Hence 0 lies in the strong closure of (J— T)(G), and since the latter 
is closed by hypothesis since G is closed and bounded, 0 lies in 
(I-~T)(G). Hence there exists a strongly convergent subsequence of 
{TnXo} which converges to an element v of G such that (J— T)v = 0, 
i.e. v is a fixed point of T. q.e.d. 

REMARK. The hypothesis that (J— T) maps bounded closed subsets 
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of X into closed subsets of X is equivalent to the demicompactness of 
Petryshyn [ l l ] . It is a consequence in particular of the stronger 
assumption that T is compact, i.e. that T maps bounded subsets of X 
into precompact subsets of X. 
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