AN ABSTRACT FRAMEWORK FOR THE THEORY OF PROCESS OPTIMIZATION¹

BY HUBERT HALKIN

Communicated by V. Klee, March 7, 1966

Introduction. Ten years ago the development of a maximum principle as a necessary condition for optimality of some control problems began a new era for optimization theory. Since that time different maximum principles have been proposed and proved for a great variety of optimization problems. All these maximum principles and their proofs have a similar structure. The aim of the present paper is to give this unique structure independently of the particular characteristics of any one of these problems.

The present paper is a further addition to the trend started in Gamkrelidze [1] and [2], Halkin [3] and [4], Neustadt [5].

1. Optimization problem. We are given a set L, a mapping $f = (f_1, f_2, \dots, f_k)$ from L into E^k and an integer m with $1 \le m \le k$. The problem is to find an $\hat{x} \in L$ which maximizes $f_1(\hat{x})$ subject to the constraints $f_i(\hat{x}) \ge 0$ if $i = 2, 3, \dots, m$ and $f_i(\hat{x}) = 0$ if $i = m+1, \dots, k$.

2. Some assumptions. The set L is a subset of a linear space X. There is a set $M \subset X$ which is an approximation of L around \hat{x} and a mapping $h = (h_1, \dots, h_k): X \rightarrow E^k$ which is an approximation of faround \hat{x} . We shall require that

(i) the set M is convex and $\hat{x} \in M$.

(ii) the functionals h_i are convex for $i=1, \dots, m$ and linear-plusa-constant for $i=m+1, \dots, k$.

(iii) for any set $S = co\{\hat{x}, x_1, \dots, x_l\} \subset M$ there is a mapping $\zeta: M \to L$ such that the mappings $f \circ \zeta$ and h are continuous over S (with respect to the usual finite dimensional topology on S) and "tangent at \hat{x} over S" which means that for any $\epsilon > 0$ there is an $\eta \in (0, 1]$ with the property that $|f(\zeta(x)) - h(x)| \leq \epsilon \delta$ if $\delta \in (0, \eta]$ and $x \in co\{\hat{x}, \hat{x} + \delta(x_1 - \hat{x}), \dots, \hat{x} + \delta(x_l - \hat{x})\}$.

3. Maximum principle. The purpose of the present paper is to prove that there exists real numbers $\lambda_1, \lambda_2, \dots, \lambda_k$ such that

¹ This research was supported by the Air Force Scientific Research Office of Aerospace Research, United States Air Force under AFOSR Grant 1039-66.

HUBERT HALKIN

$$\begin{aligned} &(\alpha) \quad \sum_{i=1}^{k} |\lambda_{i}| > 0, \\ &(\beta) \qquad \lambda_{1} \ge 0 \quad \text{for } i = 1, 2, \cdots, m, \\ &(\gamma) \quad \sum_{i=1}^{k} \lambda_{i} h_{i}(\hat{x}) \ge \sum_{i=1}^{k} \lambda_{i} h_{i}(x) \quad \text{for all } x \in M. \end{aligned}$$

4. Proof of the maximum principle. There is no loss of generality by assuming that $\hat{x}=0$ and that f(0)=0. Let $K = \{(\alpha_1, \dots, \alpha_k): \alpha_i > 0, i=1, \dots, m; \alpha_i=0, i=m+1, \dots, k\}$. We have $K \cap f(L) = \emptyset$. We want to prove that K and h(M) are separated. We shall assume that K and h(M) are not separated and show that this leads to $K \cap f(L) \neq \emptyset$. If the sets h(M) and K are not separated then, Step I, there exists a set $S = co\{0, x_1, \dots, x_l\} \subset M$ such that

- (i) h(S) and K are not separated,
- (ii) l = k m + 1,
- (iii) $h_j(x_i) > 0$ for $j = 1, \dots, m$ and $i = 1, \dots, l$.

Let $S^0 = S \sim \{0\}$. Then, Step II, there exists a $\sigma > 0$ such that $h(S^0) \subset \{\rho(\alpha_1, \dots, \alpha_k) : \rho \in (0, 1], \sigma \leq \alpha_i \leq 1/\sigma, i = 1, \dots, m; -1/\sigma \leq \alpha_i \leq 1/\sigma, i = m+1, \dots, k\}$. For every $\delta \in (0, 1]$ let $S^0_{\delta} = \{\delta x : x \in S \sim \{0\}\}$. Then, Step III, there exists a $\beta \in (0, 1]$ such that $f_i(\zeta(x)) > 0$ if $i = 1, \dots, m$ and $x \in S^0_{\beta}$ where ζ is the mapping from S into L given by the definition of M. Then, Step IV, $f(\zeta(S)) \cap K \neq \emptyset$ which implies $f(L) \cap K \neq \emptyset$. This concludes the proof of the Maximum Principle. Steps I, II and III correspond to elementary properties of convex sets and convex functions in a finite dimensional Euclidean space. Step IV is a consequence of Brouwer fixed point theorem.

References

1. R. V. Gamkrelidze, On the theory of the first variation, Dokl. Akad. Nauk SSSR 161 (1965), 23-26 = Soviet Math. 6 (1965), 345-348.

2. ——, On some extremal problems in the theory of differential equations with applications to the theory of optimal control, SIAM J. Control, 3 (1965), 106–128.

3. H. Halkin, *Finite convexity in infinite dimensional spaces*, Proceedings of the Colloquium on Convexity, Copenhagen, 1965 (to appear).

4. ——, On the necessary condition for optimal control of nonlinear systems, J. Analyse Math., 12 (1964), 1-82.

5. L. W. Neustadt, Optimal control problems as extremal problems in a Banach space, Proceedings of the Symposium on System Theory, Polytechnic Institute of Brooklyn, 1965 (to appear).

UNIVERSITY OF CALIFORNIA, LA JOLLA

678