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If 5 is a semigroup, Es will denote the collection of idempotents of 
5. A bisimple semigroup S is called J-bisimple if and only if Es 
= {ei- iÇzI, the integers} with e^e^ if and only if i^j. We announce 
the determination of the structure of J-bisimple semigroups mod 
groups and a determination of several of their properties. We also give 
a certain generalization of the bicyclic semigroup and indicate an ap­
plication of this result. We use the notation and terminology of [2], 

THEOREM 1. S is an I-bisimple semigroup if and only if S=GXIXI 
under the multiplication 

(X) (& n7 m)(h, p, q) = {ga^rham~% n + p — r,rn + q-~r) 

where r = min(ra, p), a is an endomorphism of G, and a0 is the identity 
transformation or equivalently 

(g, n, m){h, p, q) = (ga8-m-pha8-% n + p, s) 

where s = max(m+p, q). 

PROOF. [9, Theorem], [l, Main Theorem], [8, Theorem 1.2 and 
Theorem 2.2] and [5, Theorem 3.3] are important. 

REMARK. An I-bisimple semigroup S has no identity and hence 
its structure may not be obtained by specializing the Clifford struc­
ture theorem [ l ] . 5 is a union of a chain of bisimple (inverse) semi­
groups Si ( i £ / ) with identity such that Es^ {e<: i £ I ° , the non-
negative integers} with e^ej if and only if i^j.2 The structure of 
these semigroups was given mod groups by Reilly [6] and Warne 
[ l l ] . Warne obtained the result by specializing the Clifford structure 
theorem [ l ] , Incidently, the multiplication is given by (1) with 1° 
replaced for I. 

If 5 is an J-bisimple semigroup with structure group G and struc­
ture endomorphism a, we will write 5 = (G, a). 

Let N denote the natural numbers. 

THEOREM 2. Let S=(G, a) and 5* = (G*, j3). Let {ƒ*: iEI\N} be a 

1 These structure theorems represent a next stage in the development of bisimple 
semigroups to the Rees Theorem in that the determination is complete (mod groups). 

2 The structure of bisimple (inverse) semigroups such that Es is linearly ordered 
has been given mod bisimple inverse semigroups with identity by Warne [9]. 
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collection of homomorphisms of G into G*, {Xii i&I\N} be a collection 
of nondecreasing functions of I into I, a(~P, and {zii iÇzI\N} be a 
collection of elements of G* such that (1) if xCZi = zixzT1 for #£G*, 
ffrC.t = afi9 (2) faxC^fi, (3) zS« = zi+1, and (4) Xw = X4+a. For 
each element (g, x, y)Ge%Sei(iE:I\N) define (g, x> y)6 = [s<-1j8a(*"*"1) 

• • • zr^zT'gfiZi • • • s^fc-*-1), X<+ a (* - i ) , X , + a ( y - i ) ] *ƒ *>*, 
y>i. If x(y) =i, the left (right) multiplier of gf{ is e*, the identity of G*. 
The square brackets indicate an element of £*. Then, 0 is a homomor-
phism of S into S* and conversely every homomorphism of S into 5* 
is obtained in this fashion. S=S* if and only if each f\ is an isomorphism 
of S onto 5* and (1), (2), and (3) are valid with a = 1. 

PROOF. The proof involves an application of [8, Theorem 2.3, 
Theorem 1.1, and Theorem 1.2]. 

Every congruence p on an 7-bisimple semigroup 5 = (G, a) is either 
a group congruence (S/p is a group) or an idempotent separating con­
gruence (each p-class contains at most one idempotent). The group 
congruences are uniquely determined by the normal subgroups of the 
maximal group homomorphic image of S. p is idempotent separating 
if and only if p=pv((g, a, b)pv(h, c, d) if and only if a = c, & = d, and 
Vg = Vh where F is a subgroup of G such that h(gan)h-lÇ: V for hE:G, 
gÇzV, and w£I°). Results of [4] are significant here. 

THEOREM 3. Let S = (G, a) and let e be the identity of G. If N 
= {gGG/gan = e for some wEI 0}, N is a normal subgroup of G. Let 
g—»g be the natural homomorphism of G onto G/N. If (xN)0 = (xa)N, 
x(EG,0 is an endomorphism of G/N. The maximal group homomorphic 
image H of S is isomorphic to G/NXl under the definition of equality, 
(g, b—a) = (h, d — c), h, gÇzG/N, a, b, c, dÇzP if there exist x, yÇ~P 
such that x+b = y+d, x+a=y+c, and gdx = hBv and the multiplication 
(g, b—a)(h, d—c) = (gOchOb, (b+d) — (a+c)). The homomorphism of S 
onto H is given by (g, i+a, i+b)0 = (g, b—a) where i £ J , a, &G/°. 

PROOF. We utilize [7, pp. 431-434, especially Theorem 2.1]. q.e.d. 
If a is the minimum group congruence on 5 = (G, a), S/3CfV^(G/iV", 0) 
(0, N are defined in the statement of Theorem 3) and by [3] S/3Q\Jcr 
S ( I , + ) . 

To determine the (ideal) extensions of 5=(G, a) by an arbitrary 
semigroup T, one utilizes the translational hull 5 of S [2, p. 140]. 

THEOREM 4. Let S=(G, a) and M = (J, G) be the full group of map-
pings of I into G (pointwise multiplication). H= {j3£ilf(I, G)/(i+l)/? 
= (if3)afor all iÇzl} is a subgroup of M(I, G). Let pi (iGI) be the inner 
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right translation of (I , + ) determined by i. Thus, W—HXI under the 
multiplication (j8, i)(y, j) = (j8 o p/y, i+j) where o is the operation in H 
and juxtaposition denotes iteration of mappings is a group. Then 
"S — WyJS with multiplication (j3, a)(g, i, j) = ((i—a)l3-gf i—a> j) and 
(£, *, j ) 0 , a) = (g(j/3), i, j + < z ) ( S r W = • ) . 

COROLLARY. £ ^ e ^ extension of S = ( G , a) fry P = lf0(G*; i£, A; P) 
-(T=M°(G*; X, i£; A)) w given by a partial homomorphism [15, p. 
522] if T has proper divisors of zero. 

THEOREM 5. Let S = (G, 8) awtf r = ilf°(G:*; i£, A, P ) . £e/ the follow­
ing functions be given: yp\ K—*I, 0: A—»I, a : K-+G, j8: A—>G, and 7 a 
homomorphism of G* into G such that pxi^O implies \B=iyp and 
ÇKfi)(ioL)—p\fY. Then <j> defined on T* by *(a; i, X)<£ = ((ia)(aY)(Xj3); 
i^, X0) is a partial homomorphism of P* into S and conversely every 
partial homomorphism of T* into S is obtained in this fashion. If 
P = ikP(G*; K, K\ A),* becomes (a, i, M^ifaKayWa)-1, # . jW-

In the case P* = M(R\ i£, A; P ) is completely simple one may give 
an explicit determination of the extensions of S by T in terms of a 
homomorphism of R into (7, + ) , mappings of R-+H (see statement 
of Theorem 4), K—»iï, K—+I, A—>iî, and A—»/ or by partial homo-
morphisms [14]. 

We next give a certain generalization of the bicyclic semigroup, C. 
Let Co Cdenote CXC under the multiplication ((m, n), (k, t))((mf, n')t 

(*', *')) = (0», »)(m', n ' ) , ƒ(», m')) where/(n, ra') = (fe, 0 , (&, 0(*'t *'), 
or (fe', £') according to whether n>m', n = m', or n<mf. (See [lO].) 
JES is lexicographically ordered if and only if Es is order isomorphic 
to I°XI° under the order (n, m)<(kf s) iî k<n or k = n and m>s. 

THEOREM 6. Let S be a bisimple semigroup. Es is lexicographically 
ordered if and only if 30, is a congruence on S and S/3C==C o C. If S 
has a trivial group of units S=C o C. 

PROOF. [5, Theorem 2.2] and [8, Theorem 1.2] are relevant. 
The above definitions and theorems may be generalized to arbitrary 

finite dimensions. For a class of bisimple semigroups 5 such that Es 
is lexicographically ordered, 5 = G X C o C where G is a certain group 
under a suitable multiplication [ l l ] . 

Warne [8], [ l l ] discussed the structure of bisimple inverse semi­
groups with identity on which 3C is a congruence. This is the case for 
all semigroups given here. However, let F be the positive part of 
any ordered field and let P = (P\o) X F under the multiplication 
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(a, b)(cy d) = (ac, bc+d). If we substitute P in the Clifford construc­
tion [ l ] , we obtain a bisimple inverse semigroup with identity on 
which 3C is not a congruence. 

The results given here will appear in [11-14]. 
Added in proof. In [17], we give examples of bisimple inverse semi­

groups without identity on which 5C is not a congruence and the 
lexicographic case (with and without identity) is developed fully in 
[16] and [17]. 
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