ON CERTAIN BISIMPLE INVERSE SEMIGROUPS1

BY R. J. WARNE

Communicated by O. G. Harrold, February 21, 1966

If S is a semigroup, E_S will denote the collection of idempotents of S. A bisimple semigroup S is called I-bisimple if and only if $E_S = \{e_i : i \in I, \text{ the integers}\}$ with $e_i \leq e_j$ if and only if $i \geq j$. We announce the determination of the structure of I-bisimple semigroups mod groups and a determination of several of their properties. We also give a certain generalization of the bicyclic semigroup and indicate an application of this result. We use the notation and terminology of [2].

Theorem 1. S is an I-bisimple semigroup if and only if $S \cong GXIXI$ under the multiplication

(1)
$$(g, n, m)(h, p, q) = (g\alpha^{p-r}h\alpha^{m-r}, n+p-r, m+q-r)$$

where $r = \min(m, p)$, α is an endomorphism of G, and α^0 is the identity transformation or equivalently

$$(g, n, m)(h, p, q) = (g\alpha^{s-m-p}h\alpha^{s-q}, n + p, s)$$

where $s = \max(m + p, q)$.

PROOF. [9, Theorem], [1, Main Theorem], [8, Theorem 1.2 and Theorem 2.2] and [5, Theorem 3.3] are important.

REMARK. An *I*-bisimple semigroup S has no identity and hence its structure may not be obtained by specializing the Clifford structure theorem [1]. S is a union of a chain of bisimple (inverse) semigroups S_i ($i \in I$) with identity such that $E_{S_i} = \{e_i : i \in I^0, \text{ the nonnegative integers}\}$ with $e_i \leq e_j$ if and only if $i \geq j$. The structure of these semigroups was given mod groups by Reilly [6] and Warne [11]. Warne obtained the result by specializing the Clifford structure theorem [1]. Incidently, the multiplication is given by (1) with I^0 replaced for I.

If S is an I-bisimple semigroup with structure group G and structure endomorphism α , we will write $S = (G, \alpha)$.

Let *N* denote the natural numbers.

THEOREM 2. Let
$$S = (G, \alpha)$$
 and $S^* = (G^*, \beta)$. Let $\{f_i : i \in I \setminus N\}$ be a

¹ These structure theorems represent a next stage in the development of bisimple semigroups to the Rees Theorem in that the determination is complete (mod groups).

² The structure of bisimple (inverse) semigroups such that E_S is linearly ordered has been given mod bisimple inverse semigroups with identity by Warne [9].

collection of homomorphisms of G into G^* , $\{X_i: i \in I \setminus N\}$ be a collection of nondecreasing functions of I into I, $a \in I^0$, and $\{z_i: i \in I \setminus N\}$ be a collection of elements of G^* such that (1) if $xC_{z_i}=z_ixz_i^{-1}$ for $x\in G^*$, $f_i\beta^aC_{z_i}=\alpha f_i$, (2) $f_{i+1}C_{z_i}=f_i$, (3) $z_i\beta^a=z_{i+1}$, and (4) $X_{i+1}=X_i+a$. For each element $(g, x, y)\in e_iSe_i(i\in I \setminus N)$ define $(g, x, y)\theta=[z_i^{-1}\beta^a(x^{-i-1})\cdots z_i^{-1}\beta^az_i^{-1}gf_iz_i\cdots z_i\beta^a(y^{-i-1}), X_i+a(x-i), X_i+a(y-i)]$ if x>i, y>i. If x(y)=i, the left (right) multiplier of gf_i is e^* , the identity of G^* . The square brackets indicate an element of S^* . Then, θ is a homomorphism of S into S^* and conversely every homomorphism of S into S^* is obtained in this fashion. $S\cong S^*$ if and only if each f_i is an isomorphism of S onto S^* and (1), (2), and (3) are valid with a=1.

PROOF. The proof involves an application of [8, Theorem 2.3, Theorem 1.1, and Theorem 1.2].

Every congruence ρ on an *I*-bisimple semigroup $S = (G, \alpha)$ is either a group congruence (S/ρ) is a group or an idempotent separating congruence (each ρ -class contains at most one idempotent). The group congruences are uniquely determined by the normal subgroups of the maximal group homomorphic image of S. ρ is idempotent separating if and only if $\rho = \rho^V((g, a, b)\rho^V(h, c, d))$ if and only if a = c, b = d, and Vg = Vh where V is a subgroup of G such that $h(g\alpha^n)h^{-1} \in V$ for $h \in G$, $g \in V$, and $n \in I^0$). Results of [4] are significant here.

THEOREM 3. Let $S = (G, \alpha)$ and let e be the identity of G. If $N = \{g \in G/g\alpha^n = e$ for some $n \in I^0\}$, N is a normal subgroup of G. Let $g \to \bar{g}$ be the natural homomorphism of G onto G/N. If $(xN)\theta = (x\alpha)N$, $x \in G$, θ is an endomorphism of G/N. The maximal group homomorphic image H of S is isomorphic to $G/N \times I$ under the definition of equality, $(\bar{g}, b-a) = (\bar{h}, d-c)$, $\bar{h}, \bar{g} \in G/N$, $a, b, c, d \in I^0$ if there exist $x, y \in I^0$ such that x+b=y+d, x+a=y+c, and $\bar{g}\theta^x=\bar{h}\theta^y$ and the multiplication $(\bar{g}, b-a)(\bar{h}, d-c) = (\bar{g}\theta^o\bar{h}\theta^b, (b+d)-(a+c))$. The homomorphism of S onto H is given by $(g, i+a, i+b)\theta = (\bar{g}, b-a)$ where $i \in I$, $a, b \in I^0$.

PROOF. We utilize [7, pp. 431–434, especially Theorem 2.1]. q.e.d. If σ is the minimum group congruence on $S = (G, \alpha)$, $S/3C \cap \sigma \cong (G/N, \theta)$ (θ, N) are defined in the statement of Theorem 3) and by [3] $S/3C \cup \sigma \cong (I, +)$.

To determine the (ideal) extensions of $S = (G, \alpha)$ by an arbitrary semigroup T, one utilizes the translational hull \overline{S} of S [2, p. 140].

THEOREM 4. Let $S = (G, \alpha)$ and M = (I, G) be the full group of mappings of I into G (pointwise multiplication). $H = \{\beta \in M(I, G)/(i+1)\beta = (i\beta)\alpha \text{ for all } i \in I\}$ is a subgroup of M(I, G). Let ρ_i $(i \in I)$ be the inner

right translation of (I, +) determined by i. Thus, $W = H \times I$ under the multiplication $(\beta, i)(\gamma, j) = (\beta \circ \rho_i \gamma, i+j)$ where \circ is the operation in H and juxtaposition denotes iteration of mappings is a group. Then $\overline{S} = W \cup S$ with multiplication $(\beta, a)(g, i, j) = ((i-a)\beta \cdot g, i-a, j)$ and $(g, i, j)(\beta, a) = (g(j\beta), i, j+a)(S \cap W = \square)$.

COROLLARY. Every extension of $S = (G, \alpha)$ by $T = M^0(G^*; K, \Lambda; P) \cdot (T = M^0(G^*; K, K; \Delta))$ is given by a partial homomorphism [15, p. 522] if T has proper divisors of zero.

THEOREM 5. Let $S = (G, \delta)$ and $T = M^0(G^*; K, \Lambda, P)$. Let the following functions be given: $\psi \colon K \to I$, $\theta \colon \Lambda \to I$, $\alpha \colon K \to G$, $\beta \colon \Lambda \to G$, and γ a homomorphism of G^* into G such that $p_{\lambda i} \neq 0$ implies $\lambda \theta = i \psi$ and $(\lambda \beta)(i\alpha) = p_{\lambda i} \gamma$. Then ϕ defined on T^* by $*(a; i, \lambda) \phi = ((i\alpha)(a\gamma)(\lambda \beta); i\psi, \lambda \theta)$ is a partial homomorphism of T^* into S and conversely every partial homomorphism of T^* into S is obtained in this fashion. If $T = M^0(G^*; K, K; \Delta)$, becomes $(a, i, j) \phi = ((i\alpha)(a\gamma)(j\alpha)^{-1}, i\psi, j\psi)$.

In the case $T^* = M(R; K, \Lambda; P)$ is completely simple one may give an explicit determination of the extensions of S by T in terms of a homomorphism of R into (I, +), mappings of $R \rightarrow H$ (see statement of Theorem 4), $K \rightarrow H$, $K \rightarrow I$, $\Lambda \rightarrow H$, and $\Lambda \rightarrow I$ or by partial homomorphisms [14].

We next give a certain generalization of the bicyclic semigroup, C. Let $C \circ C$ denote $C \times C$ under the multiplication ((m, n), (k, t))((m', n'), (k', t')) = ((m, n)(m', n'), f(n, m')) where f(n, m') = (k, t), (k, t)(k', t'), or (k', t') according to whether n > m', n = m', or n < m'. (See [10].) E_S is lexicographically ordered if and only if E_S is order isomorphic to $I^0 \times I^0$ under the order (n, m) < (k, s) if k < n or k = n and m > s.

THEOREM 6. Let S be a bisimple semigroup. E_S is lexicographically ordered if and only if \Re is a congruence on S and $S/\Re \cong C \circ C$. If S has a trivial group of units $S \cong C \circ C$.

PROOF. [5, Theorem 2.2] and [8, Theorem 1.2] are relevant.

The above definitions and theorems may be generalized to arbitrary finite dimensions. For a class of bisimple semigroups S such that E_S is lexicographically ordered, $S \cong G \times C \circ C$ where G is a certain group under a suitable multiplication [11].

Warne [8], [11] discussed the structure of bisimple inverse semigroups with identity on which $\mathcal K$ is a congruence. This is the case for all semigroups given here. However, let F be the positive part of any ordered field and let $P = (F \setminus 0) \times F$ under the multiplication (a, b)(c, d) = (ac, bc+d). If we substitute P in the Clifford construction [1], we obtain a bisimple inverse semigroup with identity on which K is not a congruence.

The results given here will appear in [11–14].

Added in proof. In [17], we give examples of bisimple inverse semigroups without identity on which X is not a congruence and the lexicographic case (with and without identity) is developed fully in [16] and [17].

References

- 1. A. H. Clifford, A class of d-simple semigroups, Amer. J. Math. 75 (1953), 547-556.
- 2. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 1, Math. Surveys, No. 7, Amer. Math. Soc., Providence, R. I., 1961.
- 3. J. M. Howie, The maximum idempotent separating congruence on an inverse semigroup, Proc. Edinburgh Math. Soc. 14 (1964), 71-79.
 - 4. G. B. Preston, Inverse semigroups, J. London Math. Soc. 29 (1954), 396-403.
- 5. D. Rees, On the ideal structure of a semi-group satisfying a cancellation law, Quart. J. Math. Oxford Ser. 19 (1948), 101-108.
- N. R. Reilly, Bisimple ω-semigroups, Proc. Glasgow Math Soc. 7 (1966), 160-
- 7. R. J. Warne, Matrix representation of d-simple semigroups, Trans. Amer. Math. Soc. 106 (1963), 427–35.
- 8. —, Homomorphisms of d-simple inverse semigroups with identity, Pacific J. Math. 14 (1964), 1111-1222.
- 9. —, A characterization of certain regular d-classes in semigroups, Illinois J. Math. 9 (1965), 304-306.
- 10. ——, Regular d-classes whose idempotents obey certain conditions, Duke J. Math. 33 (1966), 187-196.
- 11. ——, A class of bisimple inverse semigroups, Pacific J. Math. (to appear).

 12. ——, The idempotent separating congruences of a bisimble inverse semigroup. —, The idempotent separating congruences of a bisimple inverse semigroup with identity, Publ. Math. Debrecen (to appear).
 - 13. ——, I-bisimple semigroups, Trans. Amer. Math. Soc. (to appear).
 - —, Extensions of I-bisimple semigroups, Canad. J. Math. (to appear).
- 15. ——, Extensions of completely 0-simple semigroups by completely 0-simple semigroups, Proc. Amer. Math. Soc. 17 (1966), 522-523.
 - 16. ——, L-bisimple semigroups, Portugal. Math. (to appear).
 - 17. ——, Bisimple inverse semigroups mod groups, Duke Math. J. (to appear).

WEST VIRGINIA UNIVERSITY