A PROPERTY OF THE L_2 -NORM OF A CONVOLUTION

BY DOUGLAS R. ANDERSON

Communicated by A. Zygmund, December 8, 1965

Introduction. It is known that the convolution of two members, f and g, of $L_2(-\infty, +\infty)$ can be a null function without either f or g being a null function. But, if one defines f_{ν} by setting $f_{\nu}(x) = e^{i\nu x} f(x)$ for all x, f_{ν} and g will have a convolution that is not a null function for a suitable choice of ν . There is apparently no information available on how the L_2 -norm of the latter convolution depends on ν .

A partial answer to this problem will be provided in the present paper. There will be derived a lower bound on the supremum in ν of the L_2 -norm of the convolution of f_{ν} and g. The lower bound will be expressed in terms of a notion of ϵ -approximate support which is an $L_1(-\infty, +\infty)$ analog of the concept of support of a continuous function on a locally compact space. The inequality will be shown to be sharp in the sense that one can construct an f and a g for which the lower bound is approached arbitrarily closely.

Definitions and notation. Because of the need for uniqueness and because of the nature of the L_1 -norm, an appropriate analog for $L_1(-\infty, +\infty)$ of the notion of support is the following.

DEFINITION. The ϵ -approximate support of a member f of $L_1(-\infty, +\infty)$ is defined to be the closed interval $I_{\epsilon,f}$ such that

(a) $I_{\epsilon,f}$ is symmetric about the smallest real number x_0 for which

$$\int_{-\infty}^{x_0} |f(x)| dx = (\frac{1}{2}) ||f||_{1},$$

(b) $\int I_{\epsilon,f} |f(x)| dx = (1-\epsilon) ||f||_1$,

 $||f||_1$ being the L_1 -norm of f. The existence and uniqueness of x_0 and $I_{\epsilon,f}$ are clear from the absolute continuity of the indefinite integral of |f|.

For any Lebesgue-measurable set E the measure of E is denoted by m(E) and the characteristic function is denoted by $\chi(E)$. Given any two measurable functions on the real numbers, f and g, such that for almost all x, f(y)g(x-y) is in $L_1(-\infty, +\infty)$ one denotes by f * g the function for which $(f * g)(x) = \int_{-\infty}^{+\infty} f(y)g(x-y)dy$ a.e. Given any f in $L_1(-\infty, +\infty) \cap L_2(-\infty, +\infty)$ one defines the Fourier transform of f, denoted by \hat{f} , by requiring that for all real ω , $\hat{f}(\omega) = (2\pi)^{-1/2} \int_{-\infty}^{+\infty} \exp(-i\omega x) f(x) dx$. Thus, the definition of \hat{f} for an arbitrary f in $L_2(-\infty, +\infty)$ is determined. **Results.** One lemma is required for proof of the principal result. It appears below.

LEMMA. Given any two nonnegative, nonnull functions h and k in $L_1(-\infty, +\infty)$ such that $||h||_1 = ||k||_1 = 1$, then

(1)
$$\sup_{-\infty < x < +\infty} (h * k)(x) \ge \sup_{0 < \epsilon < 1} (1 - \epsilon)^2 [m(I_{\epsilon,h}) + m(I_{\epsilon,k})]^{-1}.$$

PROOF. For any real ϵ such that $0 < \epsilon < 1$, we define h_{ϵ} and k_{ϵ} , non-negative and nonnull members of $L_1(-\infty, +\infty)$, by the equations below.

(2)
$$h_{\epsilon}(z) = \chi_{I_{\epsilon,h}}(z)h(z), \quad \text{all } z,$$

(3)
$$k_{\epsilon}(x) = \chi_{I_{\epsilon,k}}(z)k(z), \quad \text{all } z.$$

First, one can use (2) and (3) to write:

(4)

$$m(I_{\epsilon,h}) + m(I_{\epsilon,k}) = m\{ [x \mid I_{\epsilon,h} \cap (x - I_{\epsilon,k}) \neq \emptyset] \}$$

$$= m\{ [x \mid \exists y \ni y \in I_{\epsilon,h}, x - y \in I_{\epsilon,k}] \}$$

$$\geq m\{ [x \mid (h_{\epsilon} * k_{\epsilon})(x) \neq 0] \}.$$

Then since $k_{\epsilon}(x)h_{\epsilon}(y)$ belongs to $L_1[(-\infty, +\infty)X(-\infty, +\infty)]$, one can combine (4) with the Fubini theorem for multiple integrals and well-known properties of the transformation T defined by T(x, y) = (x-y, y) to write the following sequence of equalities.

$$[m(I_{\epsilon,k}) + m(I_{\epsilon,k})] \left[\sup_{-\infty < x < +\infty} (h * k)(x) \right]$$

$$\geq m(\{x \mid (h_{\epsilon} * k_{\epsilon})(x) \neq 0\}) \left[\sup_{-\infty < x < +\infty} (h * k)(x) \right]$$

$$\geq m\{ [x \mid (h_{\epsilon} * k_{\epsilon})(x) \neq 0] \} \left[\sup_{-\infty < x < +\infty} (h_{\epsilon} * k_{\epsilon})(x) \right]$$

(5)

$$\geq \int_{-\infty}^{+\infty} (h_{\epsilon} * k_{\epsilon})(x) dx$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} [h_{\epsilon}(y)k_{\epsilon}(x - y)] dxdy$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} [h_{\epsilon}(y)k_{\epsilon}(x)] dxdy$$

$$= \left(\int_{-\infty}^{+\infty} h_{\epsilon}(y) dy \right) \left(\int_{-\infty}^{+\infty} k_{\epsilon}(x) dx \right)$$

$$= (1 - \epsilon)^{2}.$$

694

The conclusion of this lemma follows directly from (5).

This lemma permits one to prove the following theorem.

THEOREM. Let f and g be any two members of $L_2(-\infty, +\infty)$ such that $||f||_2 = ||g||_2 = 1$. Let $f_{\nu}(x) = e^{i\nu x}f(x)$ for all x. Let $F(x) = |\hat{f}(x)|^2$ and $G(x) = |\hat{g}(x)|^2$ for all x. Then

(6)
$$\sup_{-\infty < \nu < +\infty} \left\| f_{\nu} * g \right\|_{2} \ge \sup_{0 < \epsilon < 1} (1 - \epsilon) \left\{ 2\pi [m(I_{\epsilon,F}) + m(I_{\epsilon,G})]^{-1} \right\}^{1/2}.$$

The inequality (6) is sharp in the sense that for every positive number η there are choices of f and g for which the right side of the inequality is finite and for which the ratio of the expression on the left-hand side of (6) to the expression on the right-hand side exceeds 1 by less than η .

PROOF. The lemma and the Plancherel theorem combined yield (6).

To prove the rest of the theorem, let η be a fixed but arbitrary positive number. Then two members, p and q, of $L_2(-\infty, +\infty)$ will be defined and shown to have the asserted properties relative to η . These functions will be defined in terms of their Fourier transforms.

(7)
$$\hat{p}(\omega) = \begin{cases} (\pi\Delta)^{-1/2}(1+i\omega)^{-1}, & |\omega| \leq \tan\frac{\pi}{2}\Delta, \\ 0, & |\omega| > \tan\frac{\pi}{2}\Delta, \end{cases}$$
(8)
$$\hat{q}(\omega) = \begin{cases} \pi^{-1/2}(1+i\Delta\omega)^{-1}, & |\omega| \leq \Delta^{-1}\tan\frac{\pi}{2}\Delta, \\ 0, & |\omega| > \Delta^{-1}\tan\frac{\pi}{2}\Delta. \end{cases}$$

Here Δ is assumed to be positive and less than 1. Then, with the aid of the definitions of \hat{p} and \hat{q} and the Plancherel theorem, it can be seen that one has:

$$\sup_{\substack{-\infty < \nu < +\infty}} \| p_{\nu} * q \|_{2} = \sup_{\substack{-\infty < \nu < +\infty}} \left[2\pi \int_{-\infty}^{+\infty} | \hat{p}(\omega - \nu) |^{2} | \hat{q}(\omega) |^{2} d\omega \right]^{1/2}$$
(9)
$$= \left[2\pi \int_{-\infty}^{+\infty} | \hat{p}(\omega) |^{2} | \hat{q}(\omega) |^{2} d\omega \right]^{1/2}.$$

And the latter integral has the following evaluation.

1966]

(10)
$$\int_{-\infty}^{+\infty} |\hat{p}(\omega)|^2 |\hat{q}(\omega)|^2 d\omega = \left(2\Delta^{-1}\tan\frac{\pi}{2}\Delta + 2\tan\frac{\pi}{2}\Delta\right)^{-1} \left(\frac{\tan\pi\Delta/2}{\pi\Delta/2}\right) \cdot \left(\frac{1-2/\pi\tan^{-1}(\Delta\tan\pi\Delta/2)}{1-\Delta}\right).$$

However, one can see:

(11)
$$m(I_{0,P}) = 2 \tan \frac{\pi}{2} \Delta,$$

(12)
$$m(I_{0,Q}) = 2\Delta^{-1} \tan \frac{\pi}{2} \Delta$$

where P and Q are determined by setting $P(\omega) = |\hat{p}(\omega)|^2$ and $Q(\omega) = |\hat{q}(\omega)|^2$ for all ω . Thus, there results:

(13)
$$\begin{cases} 2\Delta^{-1} \tan \frac{\pi}{2} \Delta + \tan \frac{\pi}{2} \Delta \end{pmatrix}^{1/2} \\ \leq \sup_{0 < \epsilon < 1} (1 - \epsilon) \{ 2\pi [m(I_{\epsilon, P}) + m(I_{\epsilon, Q})]^{-1} \}^{1/2}. \end{cases}$$

Hence, combining (6), (9), (10), and (13), one can conclude that when Δ is small enough for

$$\left[\frac{\tan\frac{\pi}{2}\Delta}{\frac{\pi}{\Delta/2}}\cdot\frac{1-\frac{2}{\pi}\tan^{-1}\left(\Delta\tan\frac{\pi}{2}\Delta\right)}{1-\Delta}\right]^{1/2}-1$$

to be less than η , then the same is true of

$$\left(\sup_{-\infty < \nu < +\infty} \|p_{\nu} * q\|_{2}\right) / \left\{\sup_{0 < \epsilon < 1} \frac{(1-\epsilon)(2\pi)^{1/2}}{[m(I_{\epsilon,P}) + m(I_{\epsilon,Q})]^{1/2}}\right\} - 1.$$

It is, of course, clear from (9) and (10) that $\sup_{-\infty < \nu < +\infty} || p_{\nu} * q ||_2$ is finite.

Thus, the second part of the theorem has been approved.

COROLLARY. Let the notation of the theorem hold. Further, let f and g be restrictions to $(-\infty, +\infty)$ of entire functions of exponential type such that the types of f and g are E_1 and E_2 , respectively. Then

$$\sup_{-\infty < \nu < +\infty} ||f_{\nu} * g||_{2} \ge \left[\frac{\pi}{2} (E_{1} + E_{2})^{-1}\right]^{1/2}.$$

696

[July

PROOF. As indicated by Theorem 21 [1] the transforms of f and g vanish outside $[-E_1, E_1]$ and $[-E_2, E_2]$ respectively. Thus,

(14)
$$m(I_{o,F}) \leq 4E_1,$$

$$(15) mtextsf{m}(I_{o,G}) \leq 4E_2.$$

Since the indefinite integrals of |f| and |g| are absolutely continuous, (14) and (15) permit the following inequality.

(16)
$$\sup_{0 < \epsilon < 1} (1 - \epsilon) \left\{ 2\pi [m(I_{\epsilon,F}) + m(I_{\epsilon,G})]^{-1} \right\}^{1/2} \ge \left\{ 2\pi [4E_1 + 4E_2]^{-1} \right\}^{1/2}.$$

The assertion of the corollary follows from (16) and the theorem.

Reference

1. R. E. A. C. Paley and N. Wiener, *Fourier transforms in the complex domain*, Amer. Math. Soc. Colloq. Publ., Vol. 19, Amer. Math. Soc., Providence, R. I., 1934.

PURDUE UNIVERSITY

1966]