A PROPERTY OF THE L_{2}-NORM OF A CONVOLUTION

BY DOUGLAS R. ANDERSON

Communicated by A. Zygmund, December 8, 1965

Introduction. It is known that the convolution of two members, f and g, of $L_{2}(-\infty,+\infty)$ can be a null function without either f or g being a null function. But, if one defines f_{ν} by setting $f_{\nu}(x)=e^{i v x} f(x)$ for all x, f_{ν} and g will have a convolution that is not a null function for a suitable choice of ν. There is apparently no information available on how the L_{2}-norm of the latter convolution depends on ν.

A partial answer to this problem will be provided in the present paper. There will be derived a lower bound on the supremum in ν of the L_{2}-norm of the convolution of f_{ν} and g. The lower bound will be expressed in terms of a notion of ϵ-approximate support which is an $L_{1}(-\infty,+\infty)$ analog of the concept of support of a continuous function on a locally compact space. The inequality will be shown to be sharp in the sense that one can construct an f and a g for which the lower bound is approached arbitrarily closely.

Definitions and notation. Because of the need for uniqueness and because of the nature of the L_{1}-norm, an appropriate analog for $L_{1}(-\infty,+\infty)$ of the notion of support is the following.

Definition. The e-approximate support of a member f of $L_{1}(-\infty,+\infty)$ is defined to be the closed interval $I_{e, f}$ such that
(a) $I_{\epsilon, f}$ is symmetric about the smallest real number x_{0} for which

$$
\int_{-\infty}^{x_{0}}|f(x)| d x=\left(\frac{1}{2}\right)\|f\|_{1}
$$

(b) $\int I_{\epsilon, f}|f(x)| d x=(1-\epsilon)\|f\|_{1}$,
$\|f\|_{1}$ being the L_{1}-norm of f. The existence and uniqueness of x_{0} and $I_{\epsilon, f}$ are clear from the absolute continuity of the indefinite integral of $|f|$.

For any Lebesgue-measurable set E the measure of E is denoted by $m(E)$ and the characteristic function is denoted by $\chi(E)$. Given any two measurable functions on the real numbers, f and g, such that for almost all $x, f(y) g(x-y)$ is in $L_{1}(-\infty,+\infty)$ one denotes by $f * g$ the function for which $(f * g)(x)=\int_{-\infty}^{+\infty} f(y) g(x-y) d y$ a.e. Given any f in $L_{1}(-\infty,+\infty) \cap L_{2}(-\infty,+\infty)$ one defines the Fourier transform of f, denoted by \hat{f}, by requiring that for all real ω, $\hat{f}(\omega)=(2 \pi)^{-1 / 2} \int_{-\infty}^{+\infty} \exp (-i \omega x) f(x) d x$. Thus, the definition of \hat{f} for an arbitrary f in $L_{2}(-\infty,+\infty)$ is determined.

Results. One lemma is required for proof of the principal result. It appears below.

Lemma. Given any two nonnegative, nonnull functions h and k in $L_{1}(-\infty,+\infty)$ such that $\|h\|_{1}=\|k\|_{1}=1$, then

$$
\begin{equation*}
\sup _{-\infty<x<+\infty}(h * k)(x) \geqq \sup _{0<\epsilon<1}(1-\epsilon)^{2}\left[m\left(I_{\epsilon, h}\right)+m\left(I_{\epsilon, k}\right)\right]^{-1} . \tag{1}
\end{equation*}
$$

Proof. For any real ϵ such that $0<\epsilon<1$, we define h_{ϵ} and k_{ϵ}, nonnegative and nonnull members of $L_{1}(-\infty,+\infty)$, by the equations below.

$$
\begin{array}{ll}
h_{\epsilon}(z)=\chi_{\epsilon, h}(z) h(z), & \text { all } z, \\
k_{\epsilon}(x)=\chi I_{\epsilon, k}(z) k(z), & \text { all } z . \tag{3}
\end{array}
$$

First, one can use (2) and (3) to write:

$$
\begin{align*}
m\left(I_{\epsilon, h}\right)+m\left(I_{\epsilon, k}\right) & =m\left\{\left[x \mid I_{\epsilon, h} \cap\left(x-I_{\epsilon, k}\right) \neq \varnothing\right]\right\} \\
& =m\left\{\left[x \mid \exists y \ni y \in I_{\epsilon, h}, x-y \in I_{\epsilon, k}\right]\right\} \tag{4}\\
& \geqq m\left\{\left[x \mid\left(h_{\epsilon} * k_{\epsilon}\right)(x) \neq 0\right]\right\} .
\end{align*}
$$

Then since $k_{\epsilon}(x) h_{\epsilon}(y)$ belongs to $L_{1}[(-\infty,+\infty) X(-\infty,+\infty)]$, one can combine (4) with the Fubini theorem for multiple integrals and well-known properties of the transformation T defined by $T(x, y)$ $=(x-y, y)$ to write the following sequence of equalities.

$$
\begin{aligned}
{\left[m\left(I_{\epsilon, h}\right)+m\right.} & \left.\left(I_{\epsilon, k}\right)\right]\left[\sup _{-\infty<x<+\infty}(h * k)(x)\right] \\
& \geqq m\left(\left\{x \mid\left(h_{\epsilon} * k_{\epsilon}\right)(x) \neq 0\right\}\right)\left[\sup _{-\infty<x<+\infty}(h * k)(x)\right] \\
& \geqq m\left\{\left[x \mid\left(h_{\epsilon} * k_{\epsilon}\right)(x) \neq 0\right]\right\}\left[\sup _{-\infty<x<+\infty}\left(h_{\epsilon} * k_{\epsilon}\right)(x)\right] \\
& \geqq \int_{-\infty}^{+\infty}\left(h_{\epsilon} * k_{\epsilon}\right)(x) d x \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left[h_{\epsilon}(y) k_{\epsilon}(x-y)\right] d x d y \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left[h_{\epsilon}(y) k_{\epsilon}(x)\right] d x d y \\
& =\left(\int_{-\infty}^{+\infty} h_{\epsilon}(y) d y\right)\left(\int_{-\infty}^{+\infty} k_{\epsilon}(x) d x\right) \\
& =(1-\epsilon)^{2} .
\end{aligned}
$$

The conclusion of this lemma follows directly from (5).
This lemma permits one to prove the following theorem.
Theorem. Let f and g be any two members of $L_{2}(-\infty,+\infty)$ such that $\|f\|_{2}=\|g\|_{2}=1$. Let $f_{\nu}(x)=e^{i v x} f(x)$ for all x. Let $F(x)=|\hat{f}(x)|^{2}$ and $G(x)=|\hat{g}(x)|^{2}$ for all x. Then

$$
\begin{equation*}
\sup _{-\infty<\nu<+\infty}\left\|f_{\nu} * g\right\|_{2} \geqq \sup _{0<\epsilon<1}(1-\epsilon)\left\{2 \pi\left[m\left(I_{\epsilon, F}\right)+m\left(I_{\epsilon, G}\right)\right]^{-1}\right\}^{1 / 2} \tag{6}
\end{equation*}
$$

The inequality (6) is sharp in the sense that for every positive number η there are choices of f and g for which the right side of the inequality is finite and for which the ratio of the expression on the left-hand side of (6) to the expression on the right-hand side exceeds 1 by less than η.

Proof. The lemma and the Plancherel theorem combined yield (6).
To prove the rest of the theorem, let η be a fixed but arbitrary positive number. Then two members, p and q, of $L_{2}(-\infty,+\infty)$ will be defined and shown to have the asserted properties relative to η. These functions will be defined in terms of their Fourier transforms.

$$
\begin{align*}
& \hat{p}(\omega)=\left\{\begin{array}{cl}
(\pi \Delta)^{-1 / 2}(1+i \omega)^{-1}, & |\omega| \leqq \tan \frac{\pi}{2} \Delta \\
0, & |\omega|>\tan \frac{\pi}{2} \Delta
\end{array}\right. \tag{7}\\
& \hat{q}(\omega)=\left\{\begin{array}{cc}
\pi^{-1 / 2}(1+i \Delta \omega)^{-1}, & |\omega| \leqq \Delta^{-1} \tan \frac{\pi}{2} \Delta, \\
0, & |\omega|>\Delta^{-1} \tan \frac{\pi}{2} \Delta .
\end{array}\right. \tag{8}
\end{align*}
$$

Here Δ is assumed to be positive and less than 1. Then, with the aid of the definitions of \hat{p} and \hat{q} and the Plancherel theorem, it can be seen that one has:

$$
\begin{align*}
\sup _{-\infty<\nu<+\infty}\left\|p_{\nu} * q\right\|_{2} & =\sup _{-\infty<\nu<+\infty}\left[2 \pi \int_{-\infty}^{+\infty}|\hat{p}(\omega-\nu)|^{2}|\hat{q}(\omega)|^{2} d \omega\right]^{1 / 2} \\
& =\left[2 \pi \int_{-\infty}^{+\infty}|\hat{p}(\omega)|^{2}|\hat{q}(\omega)|^{2} d \omega\right]^{1 / 2} . \tag{9}
\end{align*}
$$

And the latter integral has the following evaluation.

$$
\begin{align*}
& \int_{-\infty}^{+\infty}|\hat{p}(\omega)|^{2}|\hat{q}(\omega)|^{2} d \omega \\
&=\left(2 \Delta^{-1} \tan \frac{\pi}{2} \Delta+2 \tan \frac{\pi}{2} \Delta\right)^{-1}\left(\frac{\tan \pi \Delta / 2}{\pi \Delta / 2}\right) \tag{10}\\
& \cdot\left(\frac{1-2 / \pi \tan ^{-1}(\Delta \tan \pi \Delta / 2)}{1-\Delta}\right)
\end{align*}
$$

However, one can see:

$$
\begin{align*}
& m\left(I_{0, P}\right)=2 \tan \frac{\pi}{2} \Delta \tag{11}\\
& m\left(I_{0, Q}\right)=2 \Delta^{-1} \tan \frac{\pi}{2} \Delta \tag{12}
\end{align*}
$$

where P and Q are determined by setting $P(\omega)=|\hat{p}(\omega)|^{2}$ and $Q(\omega)$ $=|\hat{q}(\omega)|^{2}$ for all ω. Thus, there results:

$$
\left.\begin{array}{rl}
\left(2 \Delta^{-1} \tan \frac{\pi}{2} \Delta+\right. & \tan
\end{array} \frac{\pi}{2} \Delta\right)^{1 / 2} .
$$

Hence, combining (6), (9), (10), and (13), one can conclude that when Δ is small enough for

$$
\left[\frac{\tan \frac{\pi}{2} \Delta}{\pi \Delta / 2} \cdot \frac{1-\frac{2}{\pi} \tan ^{-1}\left(\Delta \tan \frac{\pi}{2} \Delta\right)}{1-\Delta}\right]^{1 / 2}-1
$$

to be less than η, then the same is true of

$$
\left(\sup _{-\infty<\nu<+\infty}\left\|p_{\nu} * q\right\|_{2}\right) /\left\{\sup _{0<\epsilon<1} \frac{(1-\epsilon)(2 \pi)^{1 / 2}}{\left[m\left(I_{\epsilon, P}\right)+m\left(I_{\epsilon, Q}\right)\right]^{1 / 2}}\right\}-1 .
$$

It is, of course, clear from (9) and (10) that $\sup _{-\infty<\nu<+\infty}\left\|p_{\nu} * q\right\|_{2}$ is finite.

Thus, the second part of the theorem has been approved.
Corollary. Let the notation of the theorem hold. Further, let fand g be restrictions to $(-\infty,+\infty)$ of entire functions of exponential type such that the types of f and g are E_{1} and E_{2}, respectively. Then

$$
\sup _{-\infty<\nu<+\infty}\left\|f_{\nu} * g\right\|_{2} \geqq\left[\frac{\pi}{2}\left(E_{1}+E_{2}\right)^{-1}\right]^{1 / 2}
$$

Proof. As indicated by Theorem 21 [1] the transforms of f and g vanish outside $\left[-E_{1}, E_{1}\right]$ and $\left[-E_{2}, E_{2}\right]$ respectively. Thus,

$$
\begin{align*}
& m\left(I_{o, F}\right) \leqq 4 E_{1} \tag{14}\\
& m\left(I_{o, G}\right) \leqq 4 E_{2} \tag{15}
\end{align*}
$$

Since the indefinite integrals of $|f|$ and $|g|$ are absolutely continuous, (14) and (15) permit the following inequality.
(16) $\sup _{0<\epsilon<1}(1-\epsilon)\left\{2 \pi\left[m\left(I_{\epsilon, F}\right)+m\left(I_{\epsilon, G}\right)\right]^{-1}\right\}^{1 / 2} \geqq\left\{2 \pi\left[4 E_{1}+4 E_{2}\right]^{-1}\right\}^{1 / 2}$.

The assertion of the corollary follows from (16) and the theorem.

Reference

1. R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., Vol. 19, Amer. Math. Soc., Providence, R. I., 1934.

Purdue University

