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F. Rellich [5] and, more generally, A. M. Molcanov [3] have 
shown that the problem 

%A2u(x) + \u(x) = 0, x G Q 

u(x) — 0, x G dti 

has a discrete spectrum (and consequently a complete orthonormal 
system of eigenfunctions in £2(0)) provided that Q is a "quasi-
bounded" domain in En. A domain £2 is said to be quasi-bounded if 
it is either bounded or satisfies 

lim dist(#, dti) = 0. 

(See [ l ] for a proof of Molcanov's result, based on a generalization 
of the Kondrachoff embedding theorem for the Sobolev spaces 
H™(ti).) The problem of determining the asymptotic behavior of the 
eigenvalues of (1) has remained open (cf. [2, p. 233]). 

In the present note we consider the above problem from the point 
of view of random processes, as described in detail for the case of a 
bounded domain, as well as for the case of the operator — | A 2 + V(x) 
(with V(x)—>+ 00 as |x|—>oo) on an unbounded domain, in the 
papers of D. Ray [4] and M. Rosenblatt [6]. We will show that if 0 
satisfies the following condition 

(2) i»(0 r\ [a < \x\ < a + l]) = 0(a^) 

for some | 8 > i , then simple modifications of Ray's arguments suffice 
to prove discreteness of the spectrum, as well as to obtain an asymp­
totic formula for the eigenvalues. 

We take Ray's paper [4] as a starting point. Thus (assuming a 
cone condition for Q, as described in Theorem 1 below) we already 
have a Green's function K(x, yy t) corresponding to the equation 
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d 
(3) A2<l>(x,0 = 2 — <l>(x,t), I Ê O , t> 0, 

dt 
and zero boundary conditions. We first wish to verify that the inte­
gral operator Kt with kernel K(x, y, t) is completely continuous in 
£2(0). As in [4, Lemma 3] we see that it is sufficient to show, for 
fixed / > 0 , 

(4) J \Krt(x)\2dx->0 a s a - > o o , 
J üC\[\x\>a] 

uniformly for ^G<e2(0), ||^|| = 1. But, as in [4], 

X \Kd(x)\2dx 

< 
dx-prob{x + X(T) G 0, 0 ^ r = t] 

Qn[\x\>a] 

By an elementary calculation using (2), we have for any /3' <j8 

prob{# + X(T) £ S, 0 ^ ^ 1̂ 

S probj* + x(t) G O } = 0 ( | x\~0'), x G 0; 

here/isfixed. Hence, writing 0i = î2P\[ i^ \x\ < i + l ] , i = 0 , 1 , 2, • • •, 
we have (taking /3' > §) 

/
prob{# + x(r) Çz &, 0 ^ T ^> t} dx 

= X) I prob{# + X(T) G S, 0 = r = *} dx 

= o(Y,i-*A < oo, 

and (4) follows from this. We therefore have 

THEOREM 1. Let Q be an open set in En, satisfying condition (2) and 
the following cone condition: for each xÇîdQ, there is an open cone with 
vertex x, lying outside S. Let Kt be the integral operator in £2(&) with 
kernel K(x, y, /) . 

Then Kt is completely continuous and hence has a countable set of 
eigenvalues {exp(—•\jt)9j = 0, 1, 2, • • • } with corresponding complete 
orthonormal eigenfunctions {<t>j(x)}, which are independent of t. More­
over the \j are eigenvalues and the <t>j eigenfunctions of the problem (1). 
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COROLLARY. Let 0 be as in Theorem 1. Then 

•\\nti 1 

x,<x \ ^ / x~x W r(l + »/2) 

The proofs of the asserted properties of the Xy and <j>j are the same 
as in Ray's paper. In particular, Ray shows that 

(5) J2 exp(-XyO*i(*0 = K(x, x, t) ~ f — J 

as 2—>0, uniformly for #£Î2 ; in the present case this follows from the 
fact that K(x, y, t) is a Hilbert-Schmidt kernel, as can be proved in 
a manner similar to the above vérification of (4)—it is useful to 
notice that 0^K(x, y, 0 ^(27r*)-w / 2-exp(- \x-y\ 2/2t). 

THEOREM 2. Let Q<ZEn satisfy the hypotheses of Theorem 1. Let p(x) 
be a nonnegative function in <£i(î2). Define 

NpQO = 1L* I p(x)<t>Ax) dx-
X-<X J Ü XygX ^ 0 

/\\n!2 1 /• 

(6) tf,(X) ~ ( — J I p(x) dx. 

PROOF. Applying (5) to the Laplace-Stieltjes transform of iVp(X), 
we have 

J e~udNp(\) = I p(x) X exp(—XyO0y(#) dx 
0 «^ Q j 

= I p(#)üT(#, x, t) dx 

I I \ »/2 /• 
~ ( J I p(x) dx. 

Hence the Tauberian theorem of Karamata applies, and yields (6). 
q.e.d. 

We obviously obtain the classical formula of Weyl if we put p(x) = 1 
on a bounded region (or even on an unbounded region of finite vol­
ume). If in the general case we choose a bounded function p(x), we 
obtain NP(X)^C'NÇK) where N(\) =iVi(X) is the usual function; we 
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therefore obtain a one-sided estimate for iV(X): 

N(\) >- Xn'2 

where /(X)>-g(X) means the same as g(X) = 0(/(X)). We remark that 
our results are unaffected if the operator —A2 is replaced by —A2 

+ V(x) if V(x) is a bounded function on 0. 
The foregoing results can also be derived using analytical methods 

similar to those of Titchmarsh [7] ; the basic properties of the Green's 
function G(x, y, X) in this case are due to D. Hewgill (Thesis, Uni­
versity of British Columbia). 
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