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Let R be a Henselian discrete valuation ring (i.e., one in which 
Hensel's Lemma holds; examples are complete discrete valuation 
rings, the ring of algebraic £-adic integers, the ring of convergent 
power series in one variable over a complete valued field [ l ] ) . Let t 
be a generator of the maximal ideal, K the field of fractions, R* the 
completion of R; let K* be the field of fractions of R*. If F 
= (Fi, • • • , Fr) is a system of r polynomials in n variables with 
coefficients in Ry let FR[X] be the ideal in R[X] generated by 
Fi, • • • , Fr. If x is an w-tuple with coordinates in i?, set F(x) = (Fi(x), 
• • • , * ; ( * ) ) : 

THEOREM 1. Assume that K* is separable over K. Then there are 
integers N^l, c ^ l depending on FR[X] such that for any v^N and 
any x in R such that 

F(x) = 0 (mod tv) 

there exists y in R such that 

y s % (mod *»/c]), 

F(y) = 0. 

COROLLARY 1. Let Y be a prescheme of finite type over R. Then there 
are integers N ^ 1, c è 1 depending on Y such that for v^N and for any 
point x of Y in R/tv, the image of x mod t[vlc] lifts to a point of Y in R. 

COROLLARY 2. Y has a point in R if and only if Y has a point in 
R/tv for allv. 

Corollary 1 follows from Theorem 1 by taking a finite covering of 
F by affine opens F* and remarking that Y(S) =Ui Yi(S) for any local 
«R-algebra 5. 

Let 7 = Spec R[X]/FR[X] be the affine scheme over R defined 
by F, YK the scheme over K obtained by base change. In the special 
case that R is complete and YK is irreducible and smooth over K, 
Néron [2; Proposition 20, p. 38] has proved a different form of 
Theorem 1. 

The proof of Theorem 1 goes by Noetherian induction on YK- One 
reduces easily to the case Y reduced and irreducible. Then there are 
two cases, depending on whether the function field of YK is separable 
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or not over K* In the separable case, the key is Newton's Lemma, 
which enables us to refine x to a zero provided that F is a complete 
intersection and the Jacobian matrix of Fatx has the maximal rank 
mod tl(>v~1)/2'1; if the latter condition fails, then the inductive hypoth­
esis enables us to refine x to a zero on the singular locus of F^. In 
the inseparable case, there is a finite purely inseparable extension K' 
of K such that YK> is not reduced. Since K* is separable over K, the 
integral closure R' of R in K! is a finite jR-module [3; Oiv, 23.1.7(H)]. 
Then techniques of [4] enable us to pull (Ffl/)red down to a proper 
closed subscheme of F for which the inductive hypothesis applies. 

The detailed proof will appear in Publ. Math. Inst. Hautes Études. 
As one application of Theorem 1, recall that a domain R is called 

d if any form with coefficients in R of degree d in n variables with 
n>di has a non trivial zero in R. 

THEOREM 2. If k is a d field, then the field k((t)) of formal power 
series in one variable t over k is Ci+\. 

This generalizes some results of Lang [5], who did the cases i = 0 
and k finite. 

I t suffices to prove that -R = fc[[j]] is C%+i. By Lang [5], k[t] is 
Ci+i. Hence the hypersurface i ? in projective (n — l)-space defined by 
the given form has a point in the ring R/tv for all v. By Corollary 2, 
H has a point in R. 

Note. The same type of argument yields a short proof of Lang's 
theorem that if R is a Henselian discrete valuation ring with alge­
braically closed residue field, such that K* is separable over K, then 
R is C\. For by Corollary 2, we may assume R complete, and since & 
is inherited by finite extensions, we may also assume R unramified. 
Then the argument given in [5; p. 384] shows that H has a point in 
R/tv for all v. 
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